Abstract:
A method and apparatus are provided for transmitting and receiving signaling information in a digital broadcasting/communication system. A method for transmitting the signaling includes encoding signaling information for a physical layer to generate at least one coded block; and transmitting a frame comprising the at least one coded block.
Abstract:
A method and apparatus for decoding received packets in a broadcasting and communication system is provided. The method includes reconstructing a source block by arranging source packets received from a sender on a two-dimensional array having a width of a given symbol size, and determining at least one Erased Subdivided Encoding Symbol Index (E-SESI) corresponding to at least one source packet which is not successfully received in the reconstructed source block, determining a symbol unit for Forward Error Correction (FEC) decoding based on the at least one E-SESI, and performing FEC decoding on the reconstructed source block depending on the determined symbol unit.
Abstract:
Apparatus and method for receiving a frame including control information in a broadcasting system are provided. A frame for a broadcast service is received and includes at least one Physical Layer Pipe (PLP) and indication information for indicating a change/no-change of control information for the broadcast service in the next frame. Indication information, which includes information on a position in which the control information will change, is extracted from the frame and used to determine the position in which the control information will change.
Abstract:
A method and apparatus are provided for recovering data efficiently even when data loss has occurred over a channel or network. The packet transmission method includes arranging a first transmission packet in a source symbol in a first region of a source block; arranging a second transmission packet in a space starting with an empty space of a last source symbol where the first transmission packet is arranged, remaining after arranging the first transmission packet; arranging information related to the second transmission packet in a second region of the source block; performing Forward Error Correction (FEC) encoding on the source block; and transmitting the encoded source block.
Abstract:
A method of a user equipment (UE) in a wireless communication system is provide. The method includes: receiving, from a base station, physical downlink shared channel (PDSCH) configuration information including a higher layer parameter for a modulation and coding scheme (MCS) table; identifying the MCS table for a PDSCH based on the higher layer parameter for the MCS table; receiving, from the base station, the PDSCH; and decoding, based on the identified MCS table, the PDSCH, wherein, in case that the higher layer parameter for the MCS table indicates a 1024-quadrature amplitude modulation (QAM), the MCS table for the PDSCH is identified as an MCS table with a maximum modulation order of 10, and wherein the MCS table with the maximum modulation order of 10 includes a set of combinations comprising a modulation order and a target code rate, the set of combinations including: (10, 805.5/1024), (10, 853/1024), (10, 900.5/1024), and (10, 948/1024).
Abstract:
The present disclosure relates to a 5G communication system or a 6G communication system for supporting higher data rates beyond a 4G communication system such as long term evolution (LTE). A method performed by a transmitting node in a wireless communication system may include encoding a plurality of information bits using a plurality of cyclic redundancy check (CRC) bits, interleaving the plurality of the information bits and the plurality of the CRC bits using an interleaving pattern, generating a codeword by convolution-encoding and polar-encoding the plurality of the interleaved information bits and the plurality of the interleaved CRC bits, and transmitting the codeword to a receiving node. The interleaving pattern may correspond to a matrix generated based on a size of the plurality of the information bits and a size the plurality of the CRC bits.
Abstract:
A channel encoding method in a communication or broadcasting system is provided. The channel encoding method includes reading a first sequence corresponding to a parity check matrix, converting the first sequence to a second sequence by applying a certain rule to a block size corresponding to a parity check matrix and the first sequence, and encoding information bits based on the second sequence. The block size has at least two different integer values.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A channel encoding method in a communication or broadcasting system includes identifying an input bit size, determining a block size (Z), determining an LDPC sequence for LDPC encoding, and performing the LDPC encoding based on the LDPC sequence and the block size.
Abstract:
A pre-5th-generation (pre-5G) or 5G communication system for supporting higher data rates beyond a 4th-generation (4G) communication system, such as long term evolution (LTE) is provided. A channel encoding method in a communication or broadcasting system includes identifying an input bit size, determining a block size (Z), determining a low density parity check (LDPC) sequence to perform LDPC encoding, and performing the LDPC encoding based on the LDPC sequence and the block size.
Abstract:
The present invention related to a 5G or pre-5G communication system to be provided to support a higher data transmission rate since 4G communication systems like LTE. The present invention relates to a method and an apparatus for encoding a channel in a communication or broadcasting system supporting parity-check matrices having various sizes are provided. The method for encoding a channel includes determining a block size of the parity-check matrix; reading a sequence for generating the parity-check matrix, and transforming the sequence by applying a previously defined operation to the sequence based on the determined block size.