摘要:
A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The substrate is exposed to a buffered fluoride etch solution which undercuts the silicon to provide lateral shelves when patterned in the direction. The resulting structure includes an undercut feature when patterned in the direction.
摘要:
A method of removing a material from a surface includes providing a substrate comprising a material having a surface, contacting the surface with a polishing medium, applying a voltage to the substrate to remove material from the surface, and changing the voltage during the removing material from the surface. An electrochemical mechanical polishing method includes providing a substrate having a surface, applying a platen to the surface, applying a first voltage to the substrate, rotating the platen and surface relative to each other at a first rotational speed, increasing to a second voltage, and decreasing to a second rotational speed.
摘要:
Methods of selectively etching BPSG over TEOS are disclosed. In one embodiment, a TEOS layer may be used to prevent contamination of other components in a semiconductor device by the boron and phosphorous in a layer of BPSG deposited over the TEOS layer. An etchant of the present invention may be used to etch desired areas in the BPSG layer, wherein the high selectivity for BPSG to TEOS of etchant would result in the TEOS layer acting as an etch stop. A second etchant may be utilized to etch the TEOS layer. The second etchant may be less aggressive and, thus, not damage the components underlying the TEOS layer.
摘要:
An organic acid/fluoride-containing solution etchant having high selectivity for BPSG to TEOS. In an exemplary situation, a TEOS layer may be used to prevent contamination of other components in a semiconductor device by the boron and phosphorous in a layer of BPSG deposited over the TEOS layer. The etchant of the present invention may be used to etch desired areas in the BPSG layer, wherein the high selectivity for BPSG to TEOS of etchant would result in the TEOS layer acting as an etch stop. A second etch with a known etchant may be utilized to etch the TEOS layer. The known etchant for the second etch can be less aggressive and, thus, not damage the components underlying the TEOS layer.
摘要:
Methods and apparatuses for electromechanically and/or electrochemically-mechanically removing conductive material from a microelectronic substrate. An apparatus in accordance with one embodiment includes a support member configured to releasably carry a microelectronic substrate and first and second electrodes spaced apart from each other and from the microelectronic substrate. A polishing medium is positioned between the electrodes and the support member and has a polishing surface positioned to contact the microelectronic substrate. At least a portion of the first and second electrodes can be recessed from the polishing surface. A liquid, such as an electrolytic liquid, can be provided in the recess, for example, through flow passages in the electrodes and/or the polishing medium. A variable electrical signal is passed from at least one of the electrodes, through the electrolyte and to the microelectronic substrate to remove material from the substrate.
摘要:
A method of selectively depositing metal features on a conductive surface of a substrate. An electrode assembly that includes a plurality of electrodes connected in series so as to be oppositely polarized when a voltage is applied thereacross is positioned over the conductive surface of the substrate. The plurality of electrodes is in close proximity to, but does not contact, the conductive surface of the substrate. Positively charged portions and negatively charged portions of the conductive surface of the substrate are created and metal ions are deposited on the negatively charged portions.
摘要:
Methods and apparatuses for planarizing microelectronic substrate assemblies on fixed-abrasive polishing pads with non-abrasive lubricating planarizing solutions. One aspect of the invention is to deposit a lubricating planarizing solution without abrasive particles onto a fixed-abrasive polishing pad having a body, a planarizing surface on the body, and a plurality of abrasive particles fixedly attached to the body at the planarizing surface. The front face of a substrate assembly is pressed against the lubricating planarizing solution and at least a portion of the fixed abrasive particles on the planarizing surface of the polishing pad. At least one of the polishing pad or the substrate assembly is then moved with respect to the other to impart relative motion therebetween. As the substrate assembly moves relative to the polishing pad, regions of the front face are separated from the abrasive particles in the polishing pad by a lubricant-additive in the lubricating planarizing solution.
摘要:
A method and apparatus for removing conductive material from a microelectronic substrate. In one embodiment, the method can include engaging a microelectronic substrate with a polishing surface of a polishing pad, electrically coupling a conductive material of the microelectronic substrate to a source of electrical potential, and oxidizing at least a portion of the conductive material by passing an electrical current through the conductive material from the source of electrical potential. For example, the method can include positioning first and second electrodes apart from a face surface of the microelectronic substrate and disposing an electrolytic fluid between the face surface and the electrodes with the electrodes in fluid communication with the electrolytic fluid. The method can further include removing the portion of conductive material from the microelectronic substrate by moving at least one of the microelectronic and the polishing pad relative to the other. Accordingly, metals such as platinum can be anisotropically removed from the microelectronic substrate. The characteristics of the metal removal can be controlled by controlling the characteristics of the electrical signal applied to the microelectronic substrate, and the characteristics of a liquid disposed between the microelectronic substrate and the polishing pad.
摘要:
A method of selectively electroplating metal features on a semiconductor substrate having a conductive surface. An electrode assembly that includes a plurality of adjacent, mutually spaced and electrically isolated electrodes connected in series so as to be oppositely polarized when a voltage is applied thereacross is positioned over the substrate and an electrolyte solution is applied to the conductive surface. The electrode assembly and the conductive surface may be positioned in close proximity to, but without contacting, one another. A voltage is applied to the electrode assembly, which causes a metal film to selectively form on portions of the conductive surface that are positioned beneath an electrode exhibiting a positive polarity and, thus, negatively charged. Portions of the conductive surface positioned beneath electrodes exhibiting a negative polarity remain unplated. A DC power supply may be employed, the electrode polarity in such case being fixed or, alternatively, an AC power supply may be employed so as to cyclically vary electrode polarity and cause metal deposition beneath each electrode. An electroplating system is also disclosed.
摘要:
Methods and apparatuses for removing material from a microfeature workpiece are disclosed. In one embodiment, the microfeature workpiece is contacted with a polishing surface of a polishing medium, and is placed in electrical communication with first and second electrodes, at least one of which is spaced apart from the workpiece. A polishing liquid is disposed between the polishing surface and the workpiece and at least one of the workpiece and the polishing surface is moved relative to the other. Material is removed from the microfeature workpiece and at least a portion of the polishing liquid is passed through at least one recess in the polishing surface so that a gap in the polishing liquid is located between the microfeature workpiece and the surface of the recess facing toward the microfeature workpiece.