摘要:
The present disclosure provides a texture structure of a solar cell and a preparation method therefor. The texture structure includes a texture with a surface including a contact region and a non-contact region. The contact region is provided with a metal gate line, and has a specific surface area smaller than the non-contact region. According to the texture structure of a solar cell and the preparation method therefor provided by the present disclosure, the texture of a metal gate line coverage region and the texture of a metal gate line non-coverage region form different microscopic appearances of texture structure, and the texture structure in the non-coverage region has a specific surface area much larger than the texture structure in the coverage region, thereby reducing a contact area between a slurry metal and a PN junction on the texture, reducing the metal recombination by more than 20%, and improving the conversion efficiency.
摘要:
A method for preparing a large-scale two-dimensional single crystal material stack which has an interlayer rotation angle. Single crystal substrates are stacked and rotated at a specific angle, a two-dimensional single crystal material is epitaxial on the surface thereof, and then an upper layer and a lower layer of the two-dimensional single crystal material are attached, and a layer of the single crystal substrates on the surface is removed so as to obtain a two-dimensional single crystal stack which has a specific rotation angle. A large-scale two-dimensional single crystal material stack which has an interlayer rotation angle prepared by the described method.
摘要:
An intravascular stent and method of making an intervascular stent having a hybrid pattern a. The hybrid pattern comprises a plurality of circumferentially self-expansible members comprising a plurality of interconnected, geometrically deformable closed cells, adjacent self-expansible members interconnected by a plurality of bridge members linking a first interconnection between two closed cells in a first self-expansible member to a second interconnection between two closed cells in a second self-expansible member, wherein the second interconnection is circumferentially offset and non-adjacent to the first interconnection.
摘要:
A method for manufacturing a composite structure comprising a thin layer made of monocrystalline silicon carbide arranged on a carrier substrate made of silicon carbide, the method comprising: a) a step of providing a donor substrate made of monocrystalline silicon carbide, b) a step of ion implantation of light species into the donor substrate, to form a buried brittle plane delimiting the thin layer between the buried brittle plane and a free surface of the donor substrate, c) a succession of n steps of forming crystalline carrier layers, with n greater than or equal to 2; the n crystalline carrier layers being positioned on the front face of the donor substrate successively one on the other, and forming the carrier substrate; each formation step comprising: direct liquid injection chemical vapor deposition, at a temperature below 900° C., to form a carrier layer, the carrier layer being formed by an at least partially amorphous SiC matrix, and having a thickness of less than or equal to 200 microns; a crystallization heat treatment of the carrier layer, at a temperature of less than or equal to 1000° C., to form a crystalline carrier layer; d) a step of separation along the buried brittle plane, to form, on the one hand, a composite structure comprising the thin layer on the carrier substrate and, on the other hand, the rest of the donor substrate.
摘要:
Embodiments described herein provide processes for forming and removing epitaxial films and materials from growth wafers by epitaxial lift off (ELO) processes. In some embodiments, the growth wafer has edge surfaces with an off-axis orientation which is utilized during the ELO process. The off-axis orientation of the edge surface provides an additional variable for controlling the etch rate during the ELO process and therefore the etch front may be modulated to prevent the formation of high stress points which reduces or prevents stressing and cracking the epitaxial film stack. In one embodiment, the growth wafer is rectangular and has an edge surface with an off-axis orientation rotated by an angle greater than 0° and up to 90° relative to an edge orientation of at 0°.
摘要:
Embodiments described herein provide processes for forming and removing epitaxial films and materials from growth wafers by epitaxial lift off (ELO) processes. In some embodiments, the growth wafer has edge surfaces with an off-axis orientation which is utilized during the ELO process. The off-axis orientation of the edge surface provides an additional variable for controlling the etch rate during the ELO process and therefore the etch front may be modulated to prevent the formation of high stress points which reduces or prevents stressing and cracking the epitaxial film stack. In one embodiment, the growth wafer is rectangular and has an edge surface with an off-axis orientation rotated by an angle greater than 0° and up to 90° relative to an edge orientation of at 0°.
摘要:
Disclosed are methods for preserving the integrity of large-sized growth substrates. The methods pertain to accelerating the rate of epitaxial liftoff, and improved cleaning and etching steps. Also disclosed are devices produced therein.
摘要:
A method for producing a semiconductor epitaxial wafer, including steps of: fabricating an epitaxial wafer by epitaxially growing a semiconductor layer on a silicon-based substrate; observing the outer edge portion of the fabricated epitaxial wafer; and removing portions in which a crack, epitaxial layer peeling, and a reaction mark observed in the step of observing are present. As a result, a method for producing a semiconductor epitaxial wafer in which a completely crack-free semiconductor epitaxial wafer can be obtained, is provided.
摘要:
The present invention discloses a group III nitride wafer such as GaN, AlN, InN and their alloys having one surface visually distinguishable from the other surface. After slicing of the wafer from a bulk crystal of group III nitride with a mechanical method such as multiple wire saw, the wafer is chemically etched so that one surface of the wafer is visually distinguishable from the other surface. The present invention also discloses a method of producing such wafers.