Abstract:
A method and system for dynamically selecting call setup procedure based on channel quality. While a wireless communication device (WCD) is being served by a first radio access network (RAN), a network node receives an indication of a communication quality of the at least one channel used by the first RAN to serve the given WCD. Then, the network node selects a call setup procedure for establishing a call to be served by a second RAN based on the received indication of the communication quality of the at least one channel, where the selected call setup procedure comprises the given WCD transitioning to be served with the call by the second RAN. Next, the network node signals to invoke setup of the call using the selected call setup procedure.
Abstract:
A method and system to help avoid a failed eCSFB call setup in the presence of handover. While a WCD is being served by a base station of a first network, the base station may detect both a fallback trigger and a handover trigger. The fallback trigger may be a trigger to initiate a fallback setup procedure, where the fallback setup procedure involves execution of a sequence of steps including a particular step. The handover trigger may be a trigger to initiate a handover procedure. The base station determines that the handover trigger was detected before execution of the particular step of the fallback setup procedure. Responsive to determining that the handover trigger was detected before execution of the particular step, the base station (a) foregoes the fallback setup procedure and (b) transmits to the WCD a message directing the WCD to establish communication with the second network.
Abstract:
Disclosed are methods and systems to help conserve battery life of a user equipment device (UE). In particular, the UE may make a determination that a remaining battery life is threshold low. In response to making the determination, the UE may engage in a scanning-limiting process that involves (i) the UE identifying on the list each carrier frequency higher than the serving carrier frequency and (ii) based on the identifying, the UE excluding each identified higher carrier frequency from the list, so that, in response to detecting a trigger to scan carrier frequencies in search of target coverage for possible handover, the UE scans each carrier frequency on the list that is lower than the serving carrier frequency but forgoes scanning each identified higher carrier frequency. Further, once the UE detects the trigger, the UE may responsively scan carrier frequencies in accordance with the scanning-limiting process.
Abstract:
It may be determined that a HARQ transmission schedule from a RAN to a WCD includes HARQ acknowledgment bundling. An indication of signal quality as measured by the WCD may be received by the RAN. The indicated signal quality may be associated with a first transmission rate. The RAN may determine a first set of one or more data slots of the HARQ transmission schedule for which the WCD bundles HARQ acknowledgments. In response to this determination, one or more HARQ subpackets may be transmitted to the WCD in the first set of one or more data slots. The one or more HARQ subpackets may be transmitted at a second transmission rate that is less than the first transmission rate.
Abstract:
Disclosed is a method and system for allocating uplink air interface resources in a manner that allows particular user equipment devices (UEs) to apply less attenuation than may be specified more generally for UEs served by a base station of a wireless service provider. The base station may operate on a carrier band, serving UEs that are subscribers of the wireless service provider as well as UEs roaming in the base station's coverage area from another service provider. To avoid uplink transmission power leakage across the edges of the carrier band, the base station may broadcast a message to all the UEs notifying them to attenuate their respective transmission levels. The base station may allocate uplink air interface resources to subscribing UEs from a particular portion of the carrier band that allows them to transmit using less attenuation than roaming UEs and still avoid power leakage across the band edges.
Abstract:
Embodiments disclosed herein may be implemented by a first access node in an access network, such as by an eNodeB in an LTE network, in order to determine an uplink coordinated multipoint (CoMP) mode for one or more other access nodes with which the given access node is coordinating. An example method involves: (a) determining, by a first access node, a central processing unit (CPU) load of a second access node, (b) based at least in part on the CPU load of the second access node, the first access node selecting a coordinated multipoint (CoMP) mode from a plurality of CoMP modes, and (c) sending a CoMP-mode message from the first access node, wherein the CoMP-mode message instructs the second access node to use the selected CoMP mode.
Abstract:
A base station that serves a plurality of wireless communication devices (WCDs) will group the WCDs into physical hybrid automatic repeat request (HARQ) channel (PHICH) groups based on channel quality reported by the WCDs and will then differentially allocate transmission power among the PHICH groups, so as to provide higher transmission power for transmission to PHICH groups of WCDs that reported lower channel quality, while providing lower transmission power for transmission to PHICH groups of WCDs that reported higher channel quality.
Abstract:
A method and system for pre-configuring a UE with timing advance for use in communication with a handover target. When a UE is being served by a source base station, the source base station transmits to a target base station a measurement request that specifies an uplink reference signal that the UE will provide, and the target base station evaluates that uplink reference signal to determine a timing advance for the UE and reports the timing advance in a response to the source base station. As the source base station then directs the UE to hand over to the target base station, the source base station then provides the UE with an indication of the timing advance provided by the target base station. The UE may then transition to be served by the target base station and to make use of the indicated timing advance.
Abstract:
A system and method for reuse of identifiers for contention-free random access requests by wireless communication devices (WCDs) to a network are disclosed. A base station can configure two or more air-interface resources for concurrent, non-interfering transmissions by two or more different WCDs of identical random access requests to the base station. The base station may then assign an identical identifier for contention-free random access requests to two or more WCDs, while assigning the WCDs different ones of the two or more air-interface resources configured for the concurrent, non-interfering transmissions. The two or more WCDs can then concurrently transmit identical contention-free random access requests that do not interfere with one another. By way of example, the air-interface resources can be different instances of a physical random access channel, each instance corresponding to a different resource block of a common uplink subframe in a long-term evolution (LTE) system.
Abstract:
A method and apparatus for managing page-response intervals. When a network entity receives a paging trigger signal, the entity determines a page-response interval to use for paging the mobile station, based on one or more factors such as (i) whether the communication is to be provided to the mobile station over the same air interface and/or same air interface protocol that will carry the paging to the mobile station and/or (ii) what network, interface, or other entity the trigger signal comes from and/or what network communication module receives the trigger signal. The network entity then uses the determined page-response interval when paging the mobile station, waiting that determined period of time after each page attempt before attempting to page again or before concluding that the paging effort failed.