摘要:
An improved intracorporeal device such as a guide wire or other guiding member for use within a patient's body that is at least in part visible under magnetic resonance imaging (MRI) but is not detrimentally affected by the imaging is disclosed. The intracorporeal device has a non-conductive proximal core section, an essentially non-magnetic metallic distal core section that is preferably more flexible than the proximal core section, and that has an MRI visible member or coil in the distal section.
摘要:
A drug delivery balloon is provided, the a balloon having an outer surface, and a tunable coating disposed on at least a length of the balloon surface. The tunable coating includes a first therapeutic agent and a first excipient, and can include a second therapeutic agent and a second excipient. The first and second therapeutic agents have different dissolution rates during balloon inflation and therefore provide a coating that is tunable.
摘要:
The present invention includes a radiopaque stent comprising a cylindrical main body. The tubular main body comprises a cobalt chromium alloy that comprises cobalt, chromium and one or more radiopaque materials.
摘要:
Methods and compositions for inducing apoptosis of cells, such as macrophages, at a lesioned site of a body vessel are disclosed herein. Nitric oxide can be directly or indirectly delivered to a treatment site to increase macrophage apoptosis. Delivery can include site specific delivery of nitric oxide gas, nitric oxide in aqueous solution or a substance(s) which releases nitric oxide or causes nitric oxide to be generated from an endogenous source. Delivery can be achieved by a delivery system such as a catheter assembly, stent or other suitable device.
摘要:
Copolymers are manufactured to include a zwitterionic monomer (e.g., methacryloyloxyethyl phosphorylcholine monomer), a dihydroxyphenyl derivatized monomer, and optionally one or more additional monomers. The dihydroxyphenyl derivatized monomer gives the copolymers excellent adhesion properties. Optional monomers include a cationic amino monomer, a hydrocarbon monomer, and/or a hydrophilic monomer. The copolymers are biocompatible and can be used with medical devices.
摘要:
Devices and methods for applying a coating to an implantable device are disclosed. A method for applying a coating to an implantable device is disclosed. The method includes positioning an implantable device relative to an ultrasonic material delivery apparatus. The ultrasonic material delivery apparatus includes an ultrasonic generator. At least one of the ultrasonic material delivery apparatus and the implantable device has a positive or negative electric charge. An application material is applied to the implantable device using the ultrasonic material delivery apparatus.
摘要:
The present invention provides a method of manufacturing a stent having a coating, comprising providing a tubular stent having a lumenal side and an ablumenal side; applying a coating composition to the stents such that the coating composition contacts the lumenal and ablumenal sides of the stent; and modifying the diameter of the stent from a first diameter to a second diameter during the process of applying the coating composition.
摘要:
A method of using a biocompatible polymer is used. Biocompatible polymers are manufactured to include an ammo acid mimetic monomer and one or more hydrophobic acrylate monomers. The amino acid mimetic monomers are selected to mimic the side chain of the amino acids asparagine or glutamine. The amino acid mimetic monomer can be a methacryloyl or acryloyl derivative of 2-hydroxyacetamide, 3-hydroxypropionamide, alaninamide, lactamide, or glycinamide. These amide functional groups offer the advantage of moderate hydrophilicity with little chemical reactivity. The amino acid mimetic monomer can be copolymerized with one or more hydrophobic acrylate monomers to obtain desired coating properties.
摘要:
Biocompatible polymers are manufactured to include an amino acid mimetic monomer and one or more hydrophobic acrylate monomers. The amino acid mimetic monomers are selected to mimic the side chain of the amino acids asparagine or glutamine. The amino acid mimetic monomer can be a methacryloyl or acryloyl derivative of 2-hydroxyacetamide, 3-hydroxypropionamide, alaninamide, lactamide, or glycinamide. These amide functional groups offer the advantage of moderate hydrophilicity with little chemical reactivity. The amino acid mimetic monomer can be copolymerized with one or more hydrophobic acrylate monomers to obtain desired coating properties.