Abstract:
A centrifugal blood pump apparatus includes an impeller provided in a blood chamber, first and second permanent magnets provided in one surface and the other surface of the impeller respectively, a third permanent magnet provided in an inner wall of the blood chamber, and a magnetic element and a coil for driving the impeller to rotate with a diaphragm being interposed. First and second grooves for hydrodynamic bearing different in shape and depth from each other are formed in the inner wall of the blood chamber facing the impeller, and third and fourth grooves for hydrodynamic bearing different in shape and depth from each other are formed in the diaphragm facing the impeller. The second and fourth grooves for hydrodynamic bearing generate high hydrodynamic pressure when the impeller is activated to rotate, while the first and third grooves for hydrodynamic bearing generate high hydrodynamic pressure when the impeller steadily rotates.
Abstract:
A microinjection apparatus is designed to introduce the transfecting material into the transductant by inserting a minute injection needle (11) into the transductant and includes a container position adjuster (1), an imaging device (2), a position determiner (3) and a plurality of transporters (4). The container position adjuster adjusts the position of a container (12) accommodating therein the transductant. The imaging device captures through a lens (2a), an image of an inside of the container, which has been adjusted in position by the container position adjuster. The position determiner determines the position of the transductant from the image obtained by the imaging device. The plurality of the transporters are operable to transport the plural injection needles, individually for each of those injection needles, in dependence on the position information obtained by the position determiner.
Abstract:
A remote controlled actuator includes a spindle guide section of an elongated configuration, a distal end member fitted to a tip end of the spindle guide section for alteration in attitude, and a drive unit housing to which a base end of the spindle guide section is connected. The distal end member rotatably supports a spindle then holding a tool. The spindle guide section includes a hollow outer shell pipe, a rotary shaft and a guide pipe, and an attitude altering member for altering an attitude of the distal end member is inserted within the guide pipe. A hollow of the outer shell pipe includes a round hole portion at a center and a grooved portion depressed radially outwardly from the round hole portion. The rotary shaft is arranged within the round hole portion whereas the guide pipe is arranged within the grooved portion.
Abstract:
An insertion device of a coil includes a delivery wire driving unit, a secondary catheter driving unit, and a control circuit. A platinum coil for coil embolization is attached to the tip of a delivery wire. The delivery wire driving unit is provided in the proximity of the entrance of a Y connector such that the delivery wire is advanced and moved back. The secondary catheter driving unit is provided in the proximity of the entrance of a Y connector such that the secondary catheter is advanced and moved back. The control circuit controls the delivery wire driving unit so as to insert the delivery wire by a predetermined insertion force. If the delivery wire cannot be inserted, the control circuit controls the secondary catheter driving unit such that the secondary catheter is advanced after being moved back, and then controls the delivery wire driving unit so as to insert the delivery wire.
Abstract:
The wheel support bearing assembly is for rotatably supporting a vehicle wheel relative to an automotive vehicle body, which includes an outer member having an inner periphery formed with a plurality of rows of raceway surfaces, an inner member having raceway surfaces formed therein in face-to-face relation with the raceway surfaces in the outer member, and a plurality of rows of rolling elements interposed between those raceway surfaces, respectively; a sensor unit including a sensor mounting member and a strain sensor fitted to the sensor mounting member, the sensor unit being fitted to a stationary member, which is one of the outer member and the inner member; and wherein the sensor mounting member includes at least two contact fixing portion relative to the stationary member and the strain sensor is arranged at at least one location between the contact fixing portions.
Abstract:
A multiple rotation absolute angle detecting device includes a reduction gear mechanism having an eccentric ring fitted to a rotatable member, an internally threaded member in a stationary member, an externally threaded member engageable with the internally threaded member, and a speed reducing member to which rotation is transmitted from the externally threaded member. The externally threaded member undergoes a speed-reduced rotation at a reduction gear ratio of 1/L (L represents an arbitrarily value exceeding 1) about an axis O′ of rotation of the eccentric ring and the speed reducing member rotates around the rotatable member at a speed equal to that of the externally threaded member. A multiple rotation detecting unit for outputting a sinusoidal or sawtooth wave having one period per rotation includes a to-be-detected member in the speed reducing member and a detecting member in the stationary member that confronts the to-be-detected member.
Abstract:
To provide a sensor incorporated wheel support bearing assembly, in which a load sensor can be compactly installed in an automotive vehicle, the load acting on the vehicle wheel can be detected with high sensitivity and the manufacturing cost can be reduced, the bearing assembly having a plurality of rows of rolling elements interposed between an outer member and an inner member includes a sensor unit fitted to one of the outer member and the inner member, which serves as a stationary member. The sensor unit includes a sensor mounting member and a strain sensor fitted thereto. The sensor mounting member has two contact fixing portions fixed to the outer member and a first contact fixing portion is fixed to a flange surface of the outer member and a second contact fixing portion is fixed to a peripheral surface of the outer member.
Abstract:
A sensor-equipped wheel support bearing assembly, enabling the cost during the mass production to be reduced, includes an outer member (1), an inner member (2), a plurality of rolling elements (3) interposed between the opposed raceway surfaces. One of the outer member (1) and the inner member (2), which serves as a stationary member, is fitted with a sensor mounting member (22) provided with a strain sensor (23). The sensor mounting member (22) is further provided with a status detecting sensor (24) for detecting different status other than a strain.
Abstract:
A multiple rotation absolute angle detecting device includes a reduction gear mechanism having an eccentric ring fitted to a rotatable member, an internally threaded member in a stationary member, an externally threaded member engageable with the internally threaded member, and a speed reducing member to which rotation is transmitted from the externally threaded member. The externally threaded member undergoes a speed-reduced rotation at a reduction gear ratio of 1/L (L represents an arbitrarily value exceeding 1) about an axis O′ of rotation of the eccentric ring and the speed reducing member rotates around the rotatable member at a speed equal to that of the externally threaded member. A multiple rotation detecting unit for outputting a sinusoidal or sawtooth wave having one period per rotation includes a to-be-detected member in the speed reducing member and a detecting member in the stationary member that confronts the to-be-detected member.
Abstract:
A magnetic bearing device includes a main shaft (13), a flange shaped thrust plate (13a) coaxially mounted on the main shaft so as to extend perpendicular to the main shaft and made of a ferromagnetic material, a rolling bearing unit for supporting a radial load and a magnetic bearing unit for supporting one or both of an axial load and a bearing preload, an electromagnet (17) fitted to a spindle housing (14) so as to confront the thrust plate, without contact, a sensor (18) for detecting an axial force acting on the main shaft, and a controller (19) for controlling the electromagnet in response to an output from the sensor. In this magnetic bearing device, the stiffness of a composite spring formed by the rolling bearing unit and a support system for the rolling bearing unit is so chosen as to be higher than the negative stiffness of the electromagnet.