摘要:
In a liquid crystal display device which performs image display by controlling a liquid crystal layer by a lateral electric field that is parallel with a substrate, the lateral electric field is formed by a black matrix and a pixel electrode. That is, a common electrode and a black matrix are commonized which are separately provided conventionally. Further, a storage capacitor is formed in an area where the black matrix and a pixel line coextend with a third interlayer insulating film interposed in between. Since the storage capacitor is formed by using all the area where a thin-film transistor is covered with the black matrix, sufficient capacitance can be secured even if the widths of electrodes and wiring lines are reduced in the future.
摘要:
To provide a film forming apparatus in which an impurity contained in an organic compound is separated to be removed and a film is formed without decreasing the purity of the purified organic compound, whereby a high-purity organic compound is formed. A film forming apparatus of the present invention includes a purifying chamber for purifying an organic compound and a film forming chamber for vapor-depositing the purified organic compound onto a substrate. The organic compound purified by a zone melting method in the purifying chamber can be vapor-deposited onto the substrate provided in the film forming chamber without decreasing the purity thereof, so that a high-purity organic compound layer can be formed.
摘要:
A liquid crystal electro-optical device comprising a pair of substrates at least one of them is light-transmitting, electrodes being provided on said substrates, and an electro-optical modulating layer being supported by said pair of substrates, provided that said electro-optical modulating layer comprises an anti-ferroelectric liquid crystal material or a smectic liquid crystal material which exhibits anti-ferroelectricity, and a transparent material.
摘要:
In an active matrix type liquid crystal display device, a plurality of pixels connected to thin film transistors (TFTs) are arranged in an active matrix form in a pixel portion, and driven by a driver circuit portion. The pixel portion and the driver circuit portion are formed on one of a pair of insulating substrates. A liquid crystal material is interposed between the insulating substrates. An black matrix material made of an organic resin is formed over the one insulating substrate in which the driver circuit portion has been formed. An flat film is formed on the black matrix material.
摘要:
A liquid crystal display device is characterized by comprising first and second substrates on a surface of which electrodes are formed, a liquid crystal material with ferroelectricity or antiferroelectricity interposed between the first and second electrodes, and an orientation film and disposed between the electrode or electrodes formed on the surface of said first and/or second substrate whose surface has been subjected to a process which gives optically uniaxial orientation to the liquid crystal material, wherein said orientation film has a pretilt angle of 1.6 to 3.1 degree with respect to a nematic liquid crystal. Further, a value of a polar term of surface tension on the surface of the orientation film ranges from 11 to 15 dyne/cm.
摘要:
In an active matrix semiconductor display device in which pixel TFTs and driver circuit TFT are formed on the same substrate in an integral manner, the cell gap is controlled by gap retaining members that are disposed between a pixel area and driver circuit areas. This makes it possible to provide a uniform cell thickness profile over the entire semiconductor display device. Further, since conventional grainy spacers are not used, stress is not imposed on the driver circuit TFTs when a TFT substrate and an opposed substrate are bonded together. This prevents the driver circuit TFTs from being damaged.
摘要:
In an active matrix type liquid crystal display device, a plurality of pixels connected to thin film transistors (TFTs) are arranged in an active matrix form in a pixel portion, and driven by a driver circuit portion. The pixel portion and the driver circuit portion are formed on one of a pair of insulating substrates. A liquid crystal material is interposed between the insulating substrates. An black matrix material made of an organic resin is formed over the one insulating substrate in which the driver circuit portion has been formed. An flat film is formed on the black matrix material.
摘要:
There is provided an active matrix liquid crystal display having high reliability with improved yield of production. In an active matrix liquid crystal display in which peripheral driving circuits are in contact with a liquid crystal material, spacers are dispersed in peripheral driving circuit regions in a density lower than that in a pixel region to reduce damage to the peripheral driving circuits and to improve production yield and reliability of products.
摘要:
A liquid crystal device comprising:a pair of substrates having an electrode arrangement thereon; an orientation control means provided on at least one of said substrates; and a ferroelectric or antiferroelectric liquid crystal layer interposed between said substrates, said liquid crystal layer being uniaxially oriented by virtue of said orientation control means, wherein means for suppressing an orientation control effect of said orientation control means with respect to said liquid crystal layer is provided between said liquid crystal layer and said orientation control means.
摘要:
In a liquid crystal device using a ferroelectric liquid crystal, in the case that a liquid crystal material is injected in a space between a pair of substrates (at least one of the substrates having an alignment film), a liquid crystal mixture of a liquid crystal material and an uncured resin material having a hydrophilicity is injected in the space from an injection inlet formed between the substrates. By the above process, the uncured resin material is remained in the vicinity of the injection inlet, and the space is filled with the liquid crystal material. Subsequently, the resin material is cured to seal the injection inlet. Further, a space between a pair of the substrates is filled with a mixture of the liquid crystal material, the uncured resin material and spacer particles, the liquid crystal material is oriented, the uncured resin material is precipitated from the mixture and cured, and the liquid crystal material and the spacer particles are removed. Subsequently, the liquid crystal material (or a mixture of the liquid crystal material and the uncured resin material) is again injected in the space, the liquid crystal material is oriented, and the uncured resin material is precipitated to be cured.