Abstract:
The present invention relates to system and methods for improving efficiency of an internal combustion engine. This system may include a fuel processor. The system receives instructions for a desired engine output and operating conditions. The system may then determine an operational state corresponding to the desired output. The operational state includes designating the cylinders into one of three categories: working, deactivated and passive. The number of working cylinders is calculated by dividing the desired output by the power provided by one cylinder operating at substantially optimal efficiency. Then the system substantially disables fuel flow to and air flow to the deactivated cylinders, substantially disables fuel flow to and firing of the passive cylinders, and substantially regulates fuel flow to, air flow to and firing of the working cylinders. Firing of the working cylinders is synchronized with engine speed to reduce unwanted engine vibrations. The number of working, passive and deactivated cylinders may be continually altered in response to changes in desired output or operating conditions.
Abstract:
A variety of methods and arrangements for improving the fuel efficiency of internal combustion engines are described. Generally, selected combustion events are skipped during operation of the internal combustion engine so that other working cycles can operate at a better thermodynamic efficiency. In one aspect of the invention, an engine is controlled to operate in a variable displacement mode. In the variable displacement mode, fuel is not delivered to the working chambers (e.g. cylinders) during selected “skipped” working cycles. During active (“non-skipped”) working cycles, a maximum (e.g., unthrottled) amount of air and an optimized amount of fuel is delivered to the relevant working chambers so that the fired working chambers can operate at efficiencies closer to their optimal efficiency. A controller is used to dynamically determine the chamber firings required to provide the engine torque based on the engine's current operational state and conditions. The chamber firings may be sequenced in real time or in near real time in a manner that helps reduce undesirable vibrations of the engine.
Abstract:
A variety of methods and arrangements for improving the fuel efficiency of internal combustion engines are described. In some aspects, methods and arrangements are described for operating an engine in a throttled skip fire mode. In other aspects, methods and arrangements are described for controlling the operational state of a variable displacement engine.
Abstract:
A variety of methods and arrangements for improving the fuel efficiency of internal combustion engines are described. Generally, an engine is controlled to operate in a skip fire variable displacement mode. Feedback control is used to dynamically determine the working cycles to be skipped to provide a desired engine output. In some embodiments a substantially optimized amount of air and fuel is delivered to the working chambers during active working cycles so that the fired working chambers can operate at efficiencies close to their optimal efficiency. In some embodiments, the appropriate firing pattern is determined at least in part using predictive adaptive control. By way of example, sigma delta controllers work well for this purpose. In some implementations, the feedback includes feedback indicative of at least one of actual and requested working cycle firings. In some embodiments, the appropriate firings are determined on a firing opportunity by firing opportunity basis. Additionally, in some embodiments, an indicia of the current rotational speed of the engine is used as a clock input for a controller used to selectively cause the skipped working cycles to be skipped.
Abstract:
A variety of methods and arrangements for improving the fuel efficiency of internal combustion engines are described. Generally, an engine is controlled to operate in a skip fire variable displacement mode. Feedback control is used to dynamically determine the working cycles to be skipped to provide a desired engine output. In some embodiments a substantially optimized amount of air and fuel is delivered to the working chambers during active working cycles so that the fired working chambers can operate at efficiencies close to their optimal efficiency. In some embodiments, the appropriate firing pattern is determined at least in part using predictive adaptive control. By way of example, sigma delta controllers work well for this purpose. In some implementations, the feedback includes feedback indicative of at least one of actual and requested working cycle firings. In some embodiments, the appropriate firings are determined on a firing opportunity by firing opportunity basis. Additionally, in some embodiments, an indicia of the current rotational speed of the engine is used as a clock input for a controller used to selectively cause the skipped working cycles to be skipped.
Abstract:
A variety of methods and arrangements for improving the fuel efficiency of internal combustion engines are described. Generally, selected combustion events are skipped during operation of the internal combustion engine so that other working cycles can operate at a better thermodynamic efficiency. In one aspect of the invention, an engine is controlled to operate in a variable displacement mode. In the variable displacement mode, fuel is not delivered to the working chambers (e.g. cylinders) during selected “skipped” working cycles. During active (“non-skipped”) working cycles, a maximum (e.g., unthrottled) amount of air and an optimized amount of fuel is delivered to the relevant working chambers so that the fired working chambers can operate at efficiencies closer to their optimal efficiency. A controller is used to dynamically determine the chamber firings required to provide the engine torque based on the engine's current operational state and conditions. The chamber firings may be sequenced in real time or in near real time in a manner that helps reduce undesirable vibrations of the engine.
Abstract:
A variety of methods and arrangements are described for determining a pilot injection mass during skip fire operation of an internal combustion engine.
Abstract:
Methods and controllers for controlling engine speed to reduce NVH that occurs in conjunction with transmission shifts are described. In some embodiments, when a transmission shift to a target gear is expected, a target engine speed appropriate for the target gear is first determined. A target rate of change of the engine speed is calculated from the initial engine speed and target engine speed in conjunction with a target transition time. A target torque is then calculated from the target rate of change of engine speed. A target firing fraction or induction ratio are determined that are desired for use with the target engine speed based on the target torque. The transition to the target engine speed and target firing fraction or induction ratio are completed before the gear shift is completed. The described approaches are well suited for use during skip fire or other cylinder output level modulation operation of the engine.
Abstract:
A system and method for a variable displacement internal combustion engine using different types of pneumatic cylinder springs on skipped working cycles to control engine and aftertreatment system temperatures are described. The system and method may be used to rapidly heat up the aftertreatment system(s) and/or an engine block of the engine following a cold start by using one or more different types of pneumatic cylinder springs during skipped firing opportunities. By rapidly heating the aftertreatment system(s) and/or engine block, noxious emissions such as hydrocarbons, carbon monoxide, NOx and/or particulates, following cold starts are significantly reduced.
Abstract:
Methods, systems, and devices for managing motor torque smoothing for internal combustion engine cylinder recharging events are described herein. An engine controller in a vehicle for managing motor torque smoothing for internal combustion engine cylinder recharging events may be configured to operate the internal combustion engine at a firing fraction that is less than a value of 1.0, wherein one or more cylinders are not designated to be fired, determine a recharge event time period where a particular one of the cylinders that have not been designated to be fired is recharged, identify a disruption quantity of torque during the recharging event time period, and actuate an additional motor to initiate a supplemental quantity of torque during the recharge event time period based on the disruption quantity of torque.