Abstract:
The present invention provides a system and method for transmitting information between a device within a housing to a second device, preferably a test or monitoring unit, outside of the housing. There are numerous issues associated with transferring information from within a sealed housing to an external device. In some cases, the use of wires inside the housing may be impractical, due to internal conditions, such as fluid flow, pressure or temperature. In one embodiment, the antenna of the external RF reading device is electrically connected to the dome of the housing. In another embodiment, the device within the housing is electrically connected to a housing component. In another embodiment, the gasket is used to pass information from within the housing to an external device.
Abstract:
The present invention describes a system and method for accurately measuring the pressure within a filter housing. A pressure sensor and a communications device are coupled so as to be able to measure and transmit the pressure within the filter housing while in use. This system can comprise a single component, integrating both the communication device and the pressure sensor. Alternatively, the system can comprise separate sensor and transmitter components, in communication with one another. In yet another embodiment, a storage element can be added to the system, thereby allowing the device to store a set of pressure values. The use of this device is beneficial to many applications. For example, the ability to read pressure values in situ allows integrity tests to be performed without additional equipment. In addition, integrity testing for individual filters within multi-filter configurations is possible.
Abstract:
A method and apparatus for providing wireless communication and optionally power to the interior of a housing assembly is disclosed. In one embodiment, an antenna is molded within a gasket material, such as silicon, so as to be completely encapsulated. The gasket preferably includes at least one support arm, which holds the antenna toward the middle of the housing, so as to minimize interference from the metal housing. In further embodiments, an inductive coil is encapsulated in the gasket. An alternating current is passed through this coil to create a changing magnetic field, which can then be used to create electrical power in physically separate components, such as filtering elements. In certain embodiments, multiple loops are molded to correspond to multiple filtering elements within the housing.
Abstract:
The present invention describes a system and method for accurately measuring the pressure within a filter housing. A pressure sensor and a communications device are coupled so as to be able to measure and transmit the pressure within the filter housing while in use. This system can comprise a single component, integrating both the communication device and the pressure sensor. Alternatively, the system can comprise separate sensor and transmitter components, in communication with one another. In yet another embodiment, a storage element can be added to the system, thereby allowing the device to store a set of pressure values. The use of this device is beneficial to many applications. For example, the ability to read pressure values in situ allows integrity tests to be performed without additional equipment. In addition, integrity testing for individual filters within multi-filter configurations is possible.
Abstract:
A method and apparatus for providing wireless communication and optionally power to the interior of a housing assembly is disclosed. In one embodiment, an antenna is molded within a gasket material, such as silicon, so as to be completely encapsulated. The gasket preferably includes at least one support arm, which holds the antenna toward the middle of the housing, so as to minimize interference from the metal housing. In further embodiments, an inductive coil is encapsulated in the gasket. An alternating current is passed through this coil to create a changing magnetic field, which can then be used to create electrical power in physically separate components, such as filtering elements. In certain embodiments, multiple loops are molded to correspond to multiple filtering elements within the housing.
Abstract:
The present invention describes a system and method for supplying electrical power to a device, such as a filter element, located within a housing. In one embodiment, a conductive coil is embedded into the housing base, and a second coil is embedded into the filter element. Current is then passed through the coil in the housing base. Through induction, a current is created in the second coil in the filter element, in much the same way as a transformer functions. This inductive field may interfere with the operation of the various electronic functions, such as communications, sensing or other activities. To overcome this issue, an energy storage component, such as a capacitor, is included in the filter electronics. In this way, the power generated by the inductive field can be stored, and used when the inductive field is no longer present.
Abstract:
A water dispensing system for a refrigerator comprising a refrigeration compartment includes a manifold assembly, a monitoring device coupled to the manifold assembly and including at least one sensor, and a filter assembly including a filter housing removably mounted to the manifold assembly. The filter assembly is configured to be compatible with a plurality of suitable filter media. At least two indicators are in signal communication with the at least one sensor when the filter housing is mounted onto the manifold assembly. A controller is operatively coupled to the monitoring device. The controller is configured to identify the filter assembly and the filter medium based on a signal received from the at least one sensor and operate the water dispensing system based on the identification of the filter assembly and the filter medium.
Abstract:
Embodiments of the present invention comprise reverse osmosis filters and systems comprising embedded radio frequency identification (RFID) tags for storing and retrieving data. The RFID tags can be preferably embedded under a filtration device's protective outer shell. Information can be easily stored onto and retrieved from the embedded RFID tags. The ability to easily store and retrieve data from the embedded RFID devices facilitates the creation of loading maps, monitoring, addition, and replacement of fluid filtration devices.
Abstract:
A fluid treatment system is provided, the system including a fluid treatment cartridge for treating fluid passing therethrough. The cartridge has an inlet through which untreated fluid enters the cartridge and an outlet from which treated fluid exits the cartridge. The cartridge also has a radio frequency identification (RFID) tag for storing data. The fluid treatment system also includes a connection manifold configured to detachably support the fluid treatment cartridge. The connection manifold has an inlet flow path for directing untreated fluid to the inlet of the cartridge and an outlet flow path for directing treated fluid from the outlet of the cartridge, and a data sensor for reading data stored on the RFID tag. The fluid treatment system further includes means for evaluating the data stored on the RFID tag and read by the data sensor, as well as means for deterring fluid treatment system use based upon the evaluation of the data stored on the RFID tag and read by the data sensor.
Abstract:
The present invention describes a system and method for supplying electrical power to a device, such as a filter element, located within a housing. In one embodiment, a conductive coil is embedded into the housing base, and a second coil is embedded into the filter element. Current is then passed through the coil in the housing base. Through induction, a current is created in the second coil in the filter element, in much the same way as a transformer functions. This inductive field may interfere with the operation of the various electronic functions, such as communications, sensing or other activities. To overcome this issue, an energy storage component, such as a capacitor, is included in the filter electronics. In this way, the power generated by the inductive field can be stored, and used when the inductive field is no longer present.