摘要:
This invention relates to a multi-element membrane separator and separation method based on spiral-wound membrane elements. It includes a membrane housing, spiral-wound membrane elements, and baffles on both sides of the membrane housing, designed to secure the spiral-wound membrane elements. The permeate tubes of the spiral-wound membrane elements are connected to the openings in the perforated plates. Sealing rings are respectively provided at the connections of the permeate tubes and the perforated plate openings. This multi-element membrane separator enables a more compact arrangement of membrane elements, reducing the footprint of the membrane separation device. It also reduces the use of materials such as membrane housing, pipelines, and connecting fittings, thereby lowering equipment costs and the difficulty of membrane device assembly.
摘要:
The present disclosure provides systems and methods for the recovery of protein species from wet mill grain process streams. Systems and methods of the present disclosure may be integrated with a wet mill grain process to separate out protein species that may limit efficiency of the grain process and produce one or more product streams comprising these separated protein species. A feed stream may be fractionated by at least two membranes into retentate and permeate streams. Removing larger proteins through the membrane fractionation may allow previously soluble prolamin products in the permeate stream(s) to precipitate. The recovered protein species may include prolamin, such as zein from a corn grain feed.
摘要:
A spacer for a membrane module, the spacer comprising: a plurality of first filaments defining a plurality of fluid flow channels, in use the plurality of fluid flow channels being adjacent a membrane of the membrane module; and a plurality of second filaments provided on the plurality of first filaments and extending into the fluid flow channels, the second filaments moveable relative to the first filaments in response to an external stimulus during flow of fluid in the fluid flow channels.
摘要:
The present invention relates to a seawater desalination system for desalinating seawater by removing salinity from the seawater and an energy recovery apparatus which is preferably used in the seawater desalination system. The energy recovery apparatus includes a cylindrical chamber (CH) being installed such that a longitudinal direction of the chamber is placed in a vertical direction, a concentrated seawater port (P1) for supplying and discharging the concentrated seawater, a seawater port (P2) for supplying and discharging the seawater, a flow resistor (23) provided at a concentrated seawater port (P1) side in the chamber (CH), and a flow resistor (23) provided at a seawater port (P2) side in the chamber (CH). Each of the flow resistor (23) provided at the concentrated seawater port (P1) side and the seawater port (P2) side comprises at least one perforated circular plate, and each perforated circular plate has a plurality of holes formed in an outer circumferential area outside a circle having a predetermined diameter on the perforated circular plate.
摘要:
The present invention relates to a method of concentrating an aqueous solution at low pressure under a zero osmotic pressure difference condition, and more particularly, to a method of concentrating an aqueous solution containing a solute to be concentrated, at low pressure under a zero osmotic pressure difference condition. The method of the present invention comprises the steps of: (a) discharging water of a solute-containing aqueous solution to be concentrated, from a reverse osmosis separator to the outside, and transferring the concentrated aqueous solution to a zero osmotic pressure difference concentrator; (b) further concentrating the concentrated aqueous solution using the zero osmotic pressure difference concentrator comprising a feed chamber and a draw chamber, which are separated from each other by a reverse osmosis membrane or a forward osmosis membrane; and (c) recovering the solute and water from the aqueous solution further concentrated in the zero osmotic pressure difference concentrator. When the method of concentrating the aqueous solution at low pressure under the zero osmotic pressure difference condition is used, the aqueous solution can be concentrated to the maximum saturation concentration of a solute or a solution concentration of 100% using a reduced amount of energy without having to use an extraction solvent. In addition, there is an advantage in that a separate osmosis draw solution does not need to be used.
摘要:
A filtration assembly including: a hyperfiltration assembly including: a high pressure vessel including a feed port, concentrate port and permeate port, and a plurality of serially arranged spiral wound hyperfiltration membrane modules; a bioreactor assembly including: a low pressure vessel comprising a first and second port, and a plurality of spiral wound bioreactors located within the low pressure vessel with each bioreactor comprising a flat sheet having two opposing bio-growth surfaces and a feed spacer spirally wound about an axis; and a fluid flow pathway extending from a fluid feed source: into the first port of the low pressure vessel, through the bioreactors and out the second port of the low pressure vessel, and into the feed port of the high pressure vessel, through the membrane modules and out of the concentrate port and permeate port.
摘要:
A spiral wound filtration assembly including: i) a pressure vessel comprising a feed port, concentrate port and permeate port; ii) at least one spiral wound membrane module comprising at least one membrane envelop wound around a permeate tube which forms a permeate pathway to the permeate port; and iii) a bioreactor having a cylindrical outer periphery extending along an axis (Y) from a first end to a second end, an inlet located near the first end, and an outlet located near the second end; wherein the spiral wound membrane module and bioreactor are serially arranged within the pressure vessel.
摘要:
A spiral wound filtration assembly including: i) a pressure vessel comprising a feed port, concentrate port and permeate port; ii) at least one spiral wound membrane module comprising at least one membrane envelop wound around a permeate tube which forms a permeate pathway to the permeate port; and iii) a bioreactor having a cylindrical outer periphery extending along an axis (Y) from a first end to a second end, an inlet located near the first end, and an outlet located near the second end; wherein the spiral wound membrane module and bioreactor are serially arranged within the pressure vessel.
摘要:
A process for separating a feed gas comprising polar and non-polar gases into a gas mixture enriched in polar gas(es) and a gas mixture depleted in polar gas(es), the process comprising passing the feed gas through a gas separation unit comprising at least two gas-separation modules in order of decreasing selectivity for the polar gas(es), wherein the feed gas entering the gas separation unit comprises 1 to 35 mol % of polar gas(es).
摘要:
Provided are a porous outflow pipe and an osmosis module comprising same. A porous outflow pipe for forward osmosis or pressure-retarded osmosis, according to one embodiment of the present invention, comprises: a hollow pipe provided with a plurality of first through-holes and second through-holes in the lengthwise direction through which a fluid flows in and out; a bypass pipe arranged concentrically inside the hollow pipe in the lengthwise direction; and a partitioning plate formed along the circumference of the bypass pipe, for preventing mixing of a fluid introduced through the front end side of the hollow pipe and a fluid introduced through the second through-holes.