Abstract:
Methods are provided for protecting exterior surfaces of automobiles and other products, or components of products, against abrasion, abrasive dust, water, acid rain, etc. The methods involve applying to a surface a protective coating composition comprising an emulsion selected from the group consisting of a vinyl-acrylic copolymer emulsion and a vinyl acetate-ethylene emulsion. The emulsion is dried to form a water-resistant protective coating that can be removed from the underlying surface by peeling when no longer desired.
Abstract:
A coating composition which forms a peelable coating for protecting surfaces of an object from the outside elements. The coating composition includes a latex of rubber particles and a UV absorber, wherein the rubber particles are present from about 35 to about 50 weight percent in the coating composition. The coating composition may also include from about 0.5 to about 4 weight percent of an antioxidant; from about 0.003 to about 0.03 weight percent of a biocide; from about 0.03 to about 0.08 weight percent of a defoamer; from about 0.07 to about 0.40 weight percent of a thixotropic agent; and a rust inhibitor, wherein all weight percents are based on the total weight of the coating composition. The method of using the composition includes coating the surface with a layer of the above-described coating composition and allowing the layer of coating composition to dry and form a coating which is capable of being peeled from the object.
Abstract:
Solvent free liquid masking compositions comprise from about 5 to about 20 percent by weight of an aliphatic polyol; from about 5 to about 20 percent by weight of a plasticizer; from about 0.1 to about 1 percent by weight of a surfactant; and sufficient water to total 100 percent by weight. A method for protecting selected surfaces from paint in painting operations comprises applying a solvent free liquid masking composition to selected surfaces of an object where paint subsequently applied is not desired; allowing the liquid masking composition to dry, forming a film; painting the object, whereby surfaces carrying the film are protected from the application of paint; and removing the film.
Abstract:
A vehicle masking material and method of use. The masking material in one embodiment includes polyvinyl alcohol, ethyl alcohol, glycerine or triethylene glycol, a surfactant, and water. The masking material is applied to a surface which is to be protected from paint overspray or other mechanical process, allowed to dry, and paint is applied. After drying of the paint, the masking material is removed by peeling or water washing.
Abstract:
A process for applying a protective self-adhesive film onto a coat-finished product having an object unnecessary to be protected by the protective self-adhesive film, which process comprises (1) the following steps: applying a perforated self-adhesive film (a) having a perforation onto the surface of the coating of the coat-finished product so that an area occupied by the object may be positioned within the perforation, applying a protective self-adhesive film onto the object, the perforated self-adhesive film (a) and such a part of the coating of the coat-finished product as not to be covered with the perforated self-adhesive film (a), and removing an unnecessary portion of the protective self-adhesive film over the perforation; or (2) the following steps: applying the protective self-adhesive film onto the object and a coating of the coat-finished product, cutting out such an unnecessary portion of the protective self-adhesive film as positioned over the area occupied by the object by use of a cylindrical cutting device comprising a ring-shaped cutter blade and a cylindrical pressing means, preferably further comprising a ribbon heater to heat the cutter blade to press and adhere the remaining portion of the protective self-adhesive film around the onto the coating of the coat-finished product, and removing the cut unnecessary portion of the protective self-adhesive film by suction.
Abstract:
A splendid tentative surface protective coating which is useful in treating a surface of a substance by soldering or plating and which is peeled off easily from the surface after the treating is formed by preparing a solventless or solvent free type screen ink based on essentially an ultraviolet ray-curable rubbery elastomer, applying a coating of the ink on the surface of the substrate by screen printing or thin film coating, and curing the coating of the ink by irradiation with an ultraviolet ray. The tentative surface protective coating can reproduce exactly a pattern of a mask or screen, have a high chemical resistance and heat resistance, even if it has a thin thickness of 30 .mu.m, and have no afraid of deformation caused by heat curing, whereby a precise and shortened surface treatment of the surface of the substance can be afforded. Also, working environment is improved, and air conditioning equipment can be dispensed with owing to an absence or diminishment of an organic solvent. In addition, according to the present invention, an excellent ink composition is provided which is much suited to screen printing.
Abstract:
A method, and aqueous emulsion, for coating a metal part with a peelable mask that is resistant to attack by the strong acid and strong base etchants used in chemical milling are disclosed. The method comprises contacting a polyvalent metal cation salt-surfaced part with an anionic emulsion for a time period effective to coat the part. The anionic emulsion includes coalescent rubbery particles and pigment and has a total solids content of at least about 10 weight percent. The weight ratio of pigment to rubbery particles is about 0.1:1 to about 2:1, respectively.
Abstract:
A process for coating a selected portion of the surface of a substrate, such as an electrical bus bar, with a coating of a fusible powdered resin. The process comprises the steps of heating the substrate to a temperature sufficient to cause gelling of a gelable liquid masking composition and to cause the fusible powdered resin to bond to the substrate surface, coating those areas of the surface of the substrate which are not to be coated with the fusible powdered resin with liquid masking composition which begins to gel upon contact with the hot substrate and continues to gel until it forms a removable mask, then coating the hot substrate with the powdered resin which adheres to those areas of the substrate that are not coated with the masking composition, cooling the substrate, and removing the mask from the substrate.
Abstract:
A liquid applicator and scraper for applying a protective thin film of hardenable wax to glass during painting so that the surrounding area can be painted and the protective coating subsequently removed has a liquid container with a valve assembly for discharging the liquid to a sponge upon the application of pressure to the sponge, a blade unit which fits over the portion of the liquid container on which the sponge is mounted, the blade unit having a scraper blade affixed therein for removing the protective coating of wax after painting, and a cap for covering the portion of the blade unit in which the blade is affixed. The cap, the blade unit, and the liquid container, when assembled, form a single applicator and scraper unit with all components contained in one assembly.
Abstract:
A solvent-resistant barrier coating is used beneath a polyurethane top coat, for example for coating aircraft. The barrier coating comprises a film-forming addition polymer comprising units of a vinyl aromatic monomer and units of a monomer containing a hydroxy alkyl group and a polyisocyanate containing at least 2 isocyanate groups per molecule. The addition polymer has a hydroxyl content in the range 0.5 to 5 percent by weight due to the presence of the hydroxy alkyl groups and preferably contains at least 30 percent by weight of the vinyl aromatic monomer. The ratio of isocyanate groups to hydroxyl groups is in the range 1:1 to 2:1. The polyurethane top coat can be removed from the substrate by a stripping solvent such as methylene chloride without removing the barrier coating.