Abstract:
An apparatus and method for the photocatalytic conversion of contaminants in a fluid stream. Fluid is directed through a semitransparent packed bed or an open cell, three dimensionally reticulated, fluid permeable, semiconductor unit. Within the unit, a semiconductor, when exposed to a photoactivating light source, converts the contaminants through a photocatalytic reaction. Both the substrate and the semiconductor photocatalyst are semitransparent to the activating light to allow penetration of light into the unit, thereby distributing the light, increasing the active specific surface area, and improving the net conversion performance of the unit.
Abstract:
Ultraviolet radiation is used to disinfect water (5) in a flow tube, where the flow tube (10) acts a fluid filled light guide for the ultraviolet radiation and the ultraviolet radiation propagates through the flow tube via total internal reflection.
Abstract:
Apparatus and a method for treating a fluid. The apparatus includes a fluid passageway, at least one source of irradiation, and curved reflecting troughs for reflecting irradiation onto the fluid passageway. A space is defined between the closed ends of the troughs. A first set of reflectors joins end edges of the trough open ends, and a second set of reflectors joins the top and bottom edges of the troughs and the first set of reflectors. The reflectors and troughs define a chamber. The fluid passageway and the at least one source of irradiation are positioned in the chamber, with each source of irradiation within a respective trough. At least one of the fluid passageway and the at least one source of irradiation is spaced from any focal axes so as to provide a substantially uniform irradiation distribution within the fluid in the fluid passageway.
Abstract:
Ultraviolet water treatment apparatus in which floating pods or rafts carry high-frequency driver circuits in waterproof plastic blocks. The high-frequency driver circuits drive arrays of ultraviolet lamps in a ballast-free, non-thermionic manner.
Abstract:
A process for treating colored liquid comprises a step of contacting a colored liquid and functional water generated by electrolysis of a water solution of an electrolyte under light irradiation, to decolorize efficiently and stably to a low chromaticity.
Abstract:
An ultraviolet (UV) disinfection system and method for treating fluids including a configuration and design to function effectively with at least one UV light source or lamp that is not submerged in the fluid. The UV light source is positioned outside the fluid to be disinfected via exposure to at least one UV dose zone outside the fluid being treated wherein UV light is projected into the at least one dose zone. The UV light source may be presented in a vertical riser configuration, wherein the UV light source is positioned above the fluid to be treated and projecting a UV dose zone downward toward and into the fluid to be treated, with the fluid moving upward toward the UV light source. Alternatively, the UV light source may be presented in a non-vertical riser configuration, wherein the UV light source is positioned above the fluid stored at least temporarily within a reservoir and projecting a UV dose zone downward toward and into the static fluid to be treated, and is particularly effective where the fluid is pre-treated or purified drinking water.
Abstract:
An ultraviolet (UV) disinfection system and method for treating for treating fluids including a configuration and design to function effectively with at least one UV light source or lamp that is not submerged in the fluid. The UV light source is positioned outside the fluid to be disinfected via exposure to at least one UV dose zone outside the fluid being treated wherein UV light is projected into the at least one dose zone. The UV light source may be presented in a vertical riser configuration, wherein the UV light source is positioned above the fluid to be treated and projecting a UV dose zone downward toward and into the fluid to be treated, with the fluid moving upward toward the UV light source. Alternatively, the UV light source may be presented in a planar or horizontal design, wherein the UV light source is positioned above the fluid to be treated and projecting a WV dose zone downward toward and into the fluid to be treated, with the fluid moving in a direction substantially perpendicular to the UV dose zone. At least one interface plate is used to provide a surface zone for UV disinfection above the fluid and to provide additional treatment means for balancing pH, affecting effluent chemistry, and the like.
Abstract:
A filtration unit e.g. for ponds comprises a housing divided into a radiation chamber (18) with a water inlet (20) and a filtration chamber (19) with water outlets (21,22). A weir (23) in the partition wall (17) between the chambers controls the water level in the radiation chamber (18). One or more UV tubes (25,26) are mounted in the radiation chamber (18) above the water level therein controlled by the weir (23). Preferably the housing has a cover which is in two parts a first (33) of which extends over the radiation chamber (18) and is secured by screws or the like so that it cannot be removed inadvertently, and the second (34) of which extends over the filtration chamber (19) and is hinged to give ready access to the filtration chamber (19).
Abstract:
By using a method of removing silver in the form of sparingly soluble silver salt, especially silver sulfide, from a solution containing another silver compound, such as a silver thiosulfate complex in a photographic fix or rinsing fluid by precipitation, the solution is subjected to electromagnetic irradiation with a wavelength below 375 nm. The irradiated liquid is led through a filter-like means 33 which binds the silver sulfide to its surface as crystalline silver sulfide. As a result, the silver sulfide is precipitated and deposited on the surface of the means as solid silver sulfide which in its turns acts as a catalyst for further precipitation and depositing of solid silver sulfide on the surface of the means. By binding the solid silver sulfide to the surface of the means, the required capacity of a possible subsequent filter is reduced.
Abstract:
A method and apparatus (10) for killing microorganisms in a particle laden fluid medium (11) are disclosed. This method has the steps of providing a germicidal radiation for killing microorganisms (30) and a reflectors (40) for transferring and orienting of the germicidal radiation for killing microorganisms (30); providing a secondary flow (12) of a substantially particles free fluid; the secondary flow (12) is running along or flowing across the surface of the reflectors (40) and establishing a substantially particle free barrier environment maintaining clean the reflectors (40); orienting an emission of the germicidal radiation in a parallel array of beams (32), and passing the fluid medium (11) along a path aligned with the parallel array of beams (32). The apparatus arranged so that the maximum efficiency of use of germicidal energy is achieved, energy consumption for sterilization will decrease, reliability and period between maintenance will increase.