Abstract:
A low-loss optical fiber over wide wavelength range includes a transmission loss of less than or equal to 40 dB/km in a whole wavelength range of 400-1400 nm, and being manufactured by drawing an optical fiber preform including a core composed of a silica glass having a hydroxyl-group concentration of less than or equal to 1 ppm and a cladding composed of a silica glass having a fluorine concentration of more than or equal to 3.2 wt %.
Abstract:
A method for manufacturing an optical fiber preform includes a process A of applying flame polishing to a center glass rod, a process B of determining a ratio ra/rb, which is a ratio of a radius ra of the center glass rod expressed in millimeters with respect to a radius rb of a target optical fiber preform expressed in millimeters, based on a refractive index profile of a target optical fiber preform, and a process C of determining an amount of fine glass particles to be deposited on the center glass rod so that a ratio ra/rb/c falls within a range from 0.002 to 0.01, where “c” is a maximum value of hydroxyl group concentration expressed in ppm in the vicinity of a boundary between the center glass rod and an outer layer, which is formed by depositing fine glass particles on the center rod and by being vitrified.
Abstract:
A method for manufacturing an optical fiber preform, including: a) providing a lining tube as a substrate tube, and doping and depositing by a PCVD or an MCVD process; b) in the reacting gas of silicon tetrachloride and oxygen, introducing a fluorine-containing gas for fluorine doping, introducing germanium tetrachioride for germanium doping, ionizing the reacting gas in the lining tube through microwaves to form plasma, depositing the plasma on the inner wall of the lining tube in the form of glass; c) after the completion of deposition, processing the deposited lining tube into a solid core rod by melting contraction through an electric heating furnace; d) sleeving the solid core rod into a pure quartz glass jacketing tube and manufacturing the two into an optical fiber preform; and e) allowing the effective diameter d of the optical fiber preform to become between 95 and 205 mm.
Abstract:
A known method for producing a hollow cylinder of synthetic quartz glass comprises the steps of: (a) providing an inner tube of synthetic quartz glass having an inner bore defined by an inner wall, (b) cladding the inner tube (3′) with an SiO2 soot layer (4′), and (c) sintering the SiO2 soot layer with formation of the hollow cylinder. Starting therefrom, to indicate a method in which on the one hand the sintering process is completed before the hollow cylinder is further processed together with the core rod, and in which on the other hand a complicated machining of the inner bore of the hollow cylinder of quartz glass is not required, the invention suggests that during sintering the surface temperature of the inner wall of the inner tube should be kept below the softening temperature.
Abstract:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
Abstract:
A modification process of the synthetic quartz powder, which can make a quartz glass product hardly having bubbles at the time of fusing, is provided, along with a modification process of the synthetic quartz powder and a glass product using said modified quartz powder are provided, wherein the synthetic quartz powder is kept in helium atmosphere at least in the temperature falling process, when the amorphous synthetic quartz powder produced by the sol-gel method is carried out by heat treatment in a vacuum furnace at more than the degas temperature and less than the baking temperature, wherein the highest temperature in the helium atmosphere is preferably set to from more than 700° C. to less than 1400° C., and the helium atmosphere is kept to less than 400° C.
Abstract:
The present invention relates to a method for manufacturing a preform for optical fibers, wherein deposition of glass-forming compounds on the substrate takes place. The present invention furthermore relates to a method for manufacturing optical fibers, wherein one end of a solid preform is heated, after which an optical fibre is drawn from said heated end.
Abstract:
A modification process of the synthetic quartz powder, which can make a quartz glass product hardly having bubbles at the time of fusing, is provided, along with a modification process of the synthetic quartz powder and a glass product using said modified quartz powder are provided, wherein the synthetic quartz powder is kept in helium atmosphere at least in the temperature falling process, when the amorphous synthetic quartz powder produced by the sol-gel method is carried out by heat treatment in a vacuum furnace at more than the degas temperature and less than the baking temperature, wherein the highest temperature in the helium atmosphere is preferably set to from more than 700° C. to less than 1400° C., and the helium atmosphere is kept to less than 400° C.
Abstract:
Fused silica glass having an internal transmittance of UV with 245 nm wavelength, being at least 95% at 10 mm thickness, a OH content of not larger than 5 ppm, and a content of Li, Na, K, Mg, Ca and Cu each being smaller than 0.1 ppm. Preferably the glass has a viscosity coefficient at 1215° C. of at least 1011.5 Pa·s; and a Cu ion diffusion coefficient of not larger than 1×10−10 cm2/sec in a depth range of greater than 20 μm up to 100 μm, from the surface, when leaving to stand at 1050° C. in air for 24 hours. The glass is made by crystobalitizing powdery silica raw material; then, fusing the crystobalitized silica material in a non-reducing atmosphere. The glass exhibits a high transmittance of ultraviolet, visible and infrared rays, has high purity and heat resistance, and exhibits a reduced diffusion rate of metal impurities, therefore, it is suitable for various optical goods, semiconductor-production apparatus members, and liquid crystal display production apparatus members.
Abstract:
A synthetic quartz glass for an optical member which is free from compaction and rarefaction is obtained. A synthetic quartz glass for an optical member to be used for an optical device employing a light having a wavelength of at most 400 nm and at least 170 nm as a light source, which contains substantially no oxygen excess defects, dissolved oxygen molecules nor reduction type defects, which has a chlorine concentration of at most 50 ppm and a OH group concentration of at most 100 ppm, and which contains oxygen deficient defects within a concentration range of at most 5×1014 defects/cm3 and at least 1×1013 defects/cm3. The fluorine concentration is preferably at most 100 ppm.
Abstract translation:得到不含压实和稀释的用于光学构件的合成石英玻璃。 用于光学元件的合成石英玻璃,其用于使用波长最多为400nm且至少170nm的光作为光源的光学元件,其基本上不含氧过剩缺陷,溶解氧分子或还原型 其浓度最多为50ppm,OH基浓度为100ppm以下,含有缺氧缺陷量为5×1014个/ cm 3以下且至少1×10 13个缺陷/ cm 3以下的缺陷缺陷。 氟浓度优选为100ppm以下。