Abstract:
A method of well testing to determine properties of oil and gas wells 8 comprises: applying oscillations to the flow rate and/or pressure at multiple wells 8 wherein the oscillations applied at different wells of the multiple wells are at different test frequencies; receiving measurements of flow rate in flows downstream of a production header that combines the flows from the multiple wells 8, and/or receiving measurements of pressure and/or temperature from individual wells 8; carrying out a frequency analysis of the pressure, flow rate and/or temperature measurements to determine pressure, flow rate and/or temperature variations induced by the applied oscillations; and determining properties of the different wells 8 of the multiple wells 8 based on the results of the frequency analysis at the test frequencies for the wells 8.
Abstract:
An apparatus having conduits, flattened tubing or pipes of varying widths, heights and/or lengths may simulate a network of fractures that may be used to experimentally evaluate the flow of treatment fluids (e.g. fracturing fluids) within narrow, shale-type fractures. The tubing or pipes each have an interior space with a height and a width, and in one non-limiting embodiment the ratio of height/width is at least 10. The conduits may be constructed of flattened tubing or constructed from components designed and engineered to have the correct height/width ratio. The apparatus may be used to empirically develop diversion principles, more precise numeric models and the parameter relationships that control fluid diversion, secondary fracture initiation and the development of complex fracture networks.
Abstract:
A passive acoustic system and a method of utilizing the passive acoustic system in a subsurface borehole are discussed. The method includes disposing the passive acoustic system in the borehole, the passive acoustic system including at least one passive acoustic resonator, and monitoring a frequency of an acoustic signal at the at least one passive acoustic resonator. The passive acoustic system includes a protective tubing, a fiber optic cable disposed within the protective tubing, a fluid layer between the fiber optic cable and the protective tubing, and at least one passive acoustic resonator, the at least one passive acoustic resonator representing an area within the protective tubing having a known geometry, wherein the fluid layer affects a frequency of an acoustic signal obtained from the at least one passive acoustic resonator.
Abstract:
This disclosure relates to systems, methods, and devices useful for monitoring and controlling water that has been used in, for example, oil and natural gas production, recovery, or hydraulic fracturing processes. An on-line unit for measuring, controlling, and optimizing the quality of produced water after being used in a hydrocarbon production or hydraulic fracturing process is also disclosed. Optimizing and controlling can include measuring one or more properties associated with the produced water to be sure that the one or more properties are within an acceptable range and, if the one or more properties are not within the acceptable range for each respective property being measured, causing a change in flow of one or more fresh water sources and/or one or more chemicals into the produced water.
Abstract:
A well advisor system for monitoring and managing well drilling and production operations. The system may be accessed through one or more workstations, or other computing devices, which may be located at a well site or remotely. The system is in communication with and receives input from various sensors. It collects real-time sensor data sampled during operations at the well site, which may include drilling operations, running casing or tubular goods, completion operations, or the like. The system processes the data, and provides nearly instantaneous numerical and visual feedback through a variety of graphical user interfaces (“GUIs”), which are presented in the form of operation-specific consoles.
Abstract:
An apparatus for detecting a chemical of interest in a fluid or estimating a concentration of the chemical in the fluid includes: a carrier configured to be conveyed through a borehole penetrating an earth formation; a first temperature sensor disposed at the carrier and configured to sense a temperature of the fluid and provide a first temperature output; and a second temperature sensor disposed at the carrier and covered with an exothermic reaction material that experiences an exothermic reaction when exposed to the chemical of interest and configured to sense a temperature and provide a second temperature output. The apparatus further includes a processor coupled to the first temperature sensor and the second temperature sensor and configured to detect the chemical or estimate the concentration using the first temperature output and the second temperature output.
Abstract:
A method and system for monitoring any incursion of particulate matter from a gas hydrate formation into a well casing used for the production of the gas hydrate and determining the degree of incursion of particulate material within the distal end of the well casing.
Abstract:
A disclosed remote work system includes a light source and a nonlinear converter optically coupled to and remote from the light source. The nonlinear light converter converts a narrowband light pulse received from the light source to a converted spectrum light pulse. The system also includes a work element coupled to the nonlinear light converter. The work element performs a work operation using the converted spectrum light pulse. A related remote work method includes generating a narrowband light pulse and conveying the narrowband light pulse to a remote location. The method also includes converting the narrowband light pulse to a converted spectrum light pulse at the remote location. The method also includes performing a sense operation or work operation at the remote location using the converted spectrum light pulse.
Abstract:
Apparatus and methods for determining downhole fluid parameters are disclosed herein. An example method includes disposing a sensor in a fluid in a wellbore. The sensor includes a heater and a temperature sensor, and the fluid is flowing at a velocity of about zero centimeters per second to about ten centimeters per second. The fluid includes particulates, paraffin or asphaltenes. The example method further includes obtaining a first measurement via the heater and obtaining a second measurement via the temperature sensor. Based on the first measurement and the second measurement, the velocity of the fluid is determined.
Abstract:
Example methods and apparatus for analyzing operations are disclosed herein. An example method includes disposing a sensor in a fluid flow passageway. The sensor has a heater and a temperature sensor. The example method further includes obtaining a first response of the sensor to a fluid flowing in the fluid flow passageway and transmitting a signal to a tool to operate the tool. Operation of the tool is to affect a fluid parameter of the fluid. The example method also includes obtaining a second response of the sensor to the fluid flowing in the fluid flow passageway and determining if the tool has operated based on the first response and the second response.