Abstract:
The invention relates to a ceramic-based bushing for mounting in a turbomachine casing to provide a smooth bearing for a pivot of a variable-pitch vane. The bushing is constituted by a metal jacket and a ceramic ring secured to the inside wall of said jacket by brazing. The invention also provides a turbomachine compressor having variable-pitch stator vanes with pivots mounted in the casing by means of such bushings.
Abstract:
The invention provides a high-temperature component for a turbomachine, in particular for a blade or vane having a main blade or vane part and a blade or vane root, the high-temperature component at least partially comprising, as base material, a porous material which is filled with a viscous filler and is surrounded by a solid layer.
Abstract:
A method of providing turbulation on the inner surface of a passage hole (e.g., a turbine cooling hole) is described. The turbulation is first applied to a substrate which can eventually be inserted into the passage hole. The substrate is often a bar or tube, formed of a sacrificial material. After the turbulation is applied to the substrate, the substrate is inserted into the passage hole. The turbulation material is then fused to the inner surface, using a conventional heating technique. The sacrificial substrate can then be removed from the hole by various techniques. Related articles are also described.
Abstract:
A novel blade configuration does not exceed the permitted stresses for particular loads, especially as a result of centrifugal forces and which at the same time, allows the turbomachine to function with a high degree of efficiency. To this end, a moving blade for the turbomachine contains at least partially a cellular material, especially a foamed metal. The cellular material can be provided e.g. in the hollowed-out part of the moving blade.
Abstract:
A method of providing turbulation on the inner surface of a passage hole (e.g., a turbine cooling hole) is described. The turbulation is first applied to a substrate which can eventually be inserted into the passage hole. The substrate is often a bar or tube, formed of a sacrificial material. After the turbulation is applied to the substrate, the substrate is inserted into the passage hole. The turbulation material is then fused to the inner surface, using a conventional heating technique. The sacrificial substrate can then be removed from the hole by various techniques. Related articles are also described.
Abstract:
A shoe for a swash plate type compressor disposed between a swash plate and a corresponding one of a plurality of pistons, the shoe being characterized by comprising: a base body formed of an aluminum alloy; and a metal plating film which covers at least a portion of a surface of the base body.
Abstract:
Methods for repairing and manufacturing a gas turbine airfoil, and the airfoil repaired and manufactured with such methods are presented with, for example, the repair method comprising providing an airfoil having specified nominal dimensions, the airfoil comprising a first material, the first material having a creep life and a fatigue life, the airfoil further comprising a leading edge section and a trailing edge section; removing at least one portion of at least one section of the airfoil to create at least one deficit of material for the airfoil relative to the specified nominal dimensions, the at least one section selected from the group consisting of the leading edge section and the trailing edge section; providing at least one insert comprising a second material, the second material having a creep life that is at least substantially equal to the creep life of the first material, and a fatigue life that is at least substantially equal to the fatigue life of the first material; and disposing the at least one insert onto the airfoil such that the at least one deficit of material is substantially eliminated.
Abstract:
Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.
Abstract:
A method for forming an exterior surface of a high-temperature component, such as a blade or vane of a gas turbine engine. The method entails forming a shell by a powder metallurgy technique that yields an airfoil whose composition can be readily tailored for the particular service conditions of the component. The method generally entails providing a pair of inner and outer mold members that form a cavity therebetween. One or more powders and any desired reinforcement material are then placed in the cavity and then consolidated at an elevated temperature and pressure in a non-oxidizing atmosphere. Thereafter, at least the outer mold member is removed to expose the consolidated powder structure. By appropriately shaping the mold members to tailor the shape of the cavity, the consolidated powder structure has the desired shape for the exterior shell of a component, such that subsequent processing of the component does not require substantially altering the configuration of the exterior shell. The airfoil can be produced as a free-standing article or produced directly on a mandrel that subsequently forms the interior structure of the component. In one embodiment, an airfoil is configured to have double walls through which cooling air flows.