摘要:
Technologies for reducing peak fault output current in a DC power generation system include a generator having a reduced damper winding and a controller to control a rectifier array to generate a DC power output. In some embodiments, the generator may have no damper windings, may have damper windings including a reduced number of damper bars, and/or may have damper windings having separated end ring mounts for each damper bar. The controller is configured to control the rectifier array so as to reduce oscillations of the DC output that may be due to the reduced damper windings. To do so, the controller is configured to generate the control signal based on an oscillation component of the DC power output. For example, the controller may generate an oscillation correction signal based on the DC power output and adjust a firing angle set point of the rectifier array based on the oscillation correction signal.
摘要:
Provided is a switching power supply device in a critical mode, including a load detection section that detects a load. When the detected load is lighter than a setting value, an upper limit of a switching frequency is lowered stepwise.
摘要:
A circuit to be utilized for an LED driver bleeder activation. The circuit comprises a circuit block for timing a duration of any removed portion of a rectified line signal. The input of the circuit to be coupled to receive the phase controlled rectified line signal through a voltage divider. Comparing the divided rectified line signal with a threshold voltage and output a comparison result. A timer coupled to the comparator and responsive to the comparison result to time the duration of the removed portion of the rectified line signal and activate the bleeder activation circuitry to turn on the switching element of the bleeder to sink a controlled current from the input line.
摘要:
An improved gated thyristor that utilizes less silicon area than IGBT, BIPOLARs or MOSFETs sized for the same application is provided. Embodiments of the inventive thyristor have a lower gate charge, and a lower forward drop for a given current density. Embodiments of the thyristor once triggered have a latch structure that does not have the same Cgd or Ccb capacitor that must be charged from the gate, and therefore the gated thyristor is cheaper to produce, and requires a smaller gate driver, and takes up less space than standard solutions. Embodiments of the inventive thyristor provide a faster turn off speed than the typical >600 ns using a modified MCT structure which results in the improved tail current turn off profile (
摘要:
An improved gated thyristor that utilizes less silicon area than IGBT, BIPOLARs or MOSFETs sized for the same application is provided. Embodiments of the inventive thyristor have a lower gate charge, and a lower forward drop for a given current density. Embodiments of the thyristor once triggered have a latch structure that does not have the same Cgd or Ceb capacitor that must be charged from the gate, and therefore the gated thyristor is cheaper to produce, and requires a smaller gate driver, and takes up less space than standard solutions. Embodiments of the inventive thyristor provide a faster turn off speed than the typical >600 ns using a modified MCT structure which results in the improved tail current turn off profile (
摘要:
In one embodiment, a method of controlling an AC-DC power converter, can include: (i) receiving, by a filter capacitor, a first branch current from an input current of the AC-DC power converter; (ii) receiving, by a power converting circuit, a second branch current from the input current; (iii) receiving, by the power converting circuit, a feedback signal that represents an output signal of the power converting circuit, and a triangular wave signal that is determined by the first branch current; (iv) generating a first conduction time based on the feedback signal such that the power converting circuit produces a first converting current; and (v) generating a second conduction time based on the triangular wave signal such that the power converting circuit produces a second converting current having a same absolute value as the first branch current.
摘要:
According to one aspect, embodiments of the invention provide a power supply system comprising an input line configured to receive input AC power, a first capacitor coupled to the input line, a second capacitor, a controller, a rectifier having an input coupled to the first capacitor and an output coupled to the second capacitor, the second capacitor further coupled to the controller, and a switch selectively coupled across the first capacitor, and configured to selectively bypass the first capacitor, wherein the controller is configured to detect a voltage across the second capacitor, operate the switch to charge the second capacitor at a first rate if the voltage is above a predetermined threshold, and operate the switch to charge the second capacitor at a second rate if the voltage is below a predetermined threshold.
摘要:
A circuit to be utilized for an LED driver bleeder activation. The circuit comprises a circuit block for timing a duration of any removed portion of a rectified line signal. The input of the circuit to be coupled to receive the phase controlled rectified line signal through a voltage divider. Comparing the divided rectified line signal with a threshold voltage and output a comparison result. A timer coupled to the comparator and responsive to the comparison result to time the duration of the removed portion of the rectified line signal and activate the bleeder activation circuitry to turn on the switching element of the bleeder to sink a controlled current from the input line.
摘要:
Short circuit safe rectifier stage for a subsea power grid It is described a rectifier stage (251) for converting an input AC voltage to an output voltage, the rectifier stage comprising: a first AC input terminal (255); a second AC input terminal (257), wherein the input AC voltage is applicable between the first input terminal and the second input terminal; a first DC output terminal (267); a second DC output terminal (268); a first thyristor (261) connected between the first DC output terminal (267) and the first AC input terminal (255); a second thyristor (263) connected between the first DC output terminal (267) and the second AC input terminal (257); a gate control circuit (272) adapted and connected to control a first conductance state of the first thyristor (261) and to control a second conductance state of the second thyristor (263) such that the first thyristor and the second thyristor provide a rectified AC voltage between the first DC output terminal (267) and the second DC output terminal (268) as the output voltage, wherein the gate control circuit has a current signal input terminal for receiving a current signal indicative of a current flowing from the first AC input terminal (255) through the first thyristor (261) to the first DC output terminal (267), wherein the control circuit is arranged and connected to control, based on the current signal, the first conductance state of the first thyristor.
摘要:
A current-source converter includes high-arm side switching elements and low-arm side switching elements. A voltage between the DC power supply lines is detected as a line voltage of an input line, based on a conduction pattern of the high-arm side switching elements and the low-arm side switching elements.