摘要:
An amplifier arrangement is provided having a first differential amplifier stage and a second differential amplifier stage, which are connected to one another with negative feedback. The second differential amplifier stage has a first voltage divider that is connected to the controlled path of the second differential amplifier stage and has at least two signal taps. The second differential amplifier stage also has a second voltage divider with at least two signal taps. Furthermore, a switching device is provided, and is connected to the at least two signal taps of the first voltage divider and to the at least two signal taps of the second voltage divider. The switching device is used to connect one of the at least two signal taps of the first voltage divider to a first output tap of the amplifier arrangement, and one of the at least two signal taps of the second voltage divider to a second output tap of the amplifier arrangement. The overall input impedance can thus be adjusted in a suitable preferred manner.
摘要:
A two-stage switched-capacitor CMOS Miller-compensated amplifier uses only n-channel transistors in its signal path to reduce the deleterious effects of parasitic capacitances in the signal path while still obtaining a high transconductance in both stages. A transistor inserted in series with the Miller capacitor between the output and input of the second stage of the amplifier introduces a feedforward zero in the left half of the S-plane of the circuit. By appropriately sizing the aspect ratio and properly biasing this transistor, the second pole of the amplifier is canceled with the introduced zero. Dummy transistors having their sources and drains connected (to serve as capacitors) are cross-connected between opposite polarity inputs and outputs of a differential pair of input transistors in the first stage to effectively cancel the gate-to-drain Miller-multiplied capacitance of the input transistors. A common-mode control current is generated based upon a voltage at a common-source node of a differential pair of input transistors in the second stage. This current is fed back to the first stage to control the common-mode of the first stage.
摘要:
A grounded-base transistor amplifier including a pair of transistors which have the bases thereof grounded at a high frequency and the collectors thereof coupled to a signal output terminal, a high frequency transformer which includes a primary winding connected to a signal input terminal and a secondary winding equipped with a midpoint tap, both ends of the secondary winding being connected to the emitters of the transistors, and a constant-current circuit which is connected to the midpoint tap of the secondary winding and which produces a bias current flow through the transistors. Noise voltages generated by the constant-current circuit are supplied to the emitters of the transistors in the same phase via the secondary winding; therefore, no noise voltage appears at the signal output terminal.
摘要:
An operational amplifier comprises a differential input stage, first and second folded cascode stages connected to the differential input stage, and first and second output inverting amplifiers. The first output inverting amplifier is driven by the output of the first folded cascode stage, and the second output inverting amplifier is driven through a current mirror by the output of the second folded cascode stage, such that a push pull output stage is provided in the operational amplifier. As a result, a driving performance is much improved in regard to a capacitive load, and a range of an output voltage can be expanded equally to a power supply voltage.
摘要:
A transconductance circuit (10) has its signal input terminals (28,40) at the gates of a pairs of MOSFETS (16,22; 32,38) which are forced to operate in the triode mode. The outputs of the triode mode MOSFET pair are fed to a cascode transistor (18,20; 34,36) for treatment as a differential signal. The differential output (30,42) of the cascode transistors is highly linear with respect to the input signal at the gates of the triode mode transistors. Bias voltages for the gates of the cascode transistors are generated by a bias network (14). The transconductance circuit 12 includes a cross-coupled set of compensation capacitors (62, 64; 66, 68) formed from devices with the same geometries as the triode mode transistors to compensate for high frequency loss due to the Miller effect in the input transistors.