Abstract:
A method for detecting the digital quality of a radio signal includes: receiving a radio signal including a digital portion modulated by a series of symbols each including a plurality of samples; computing correlation points between endpoint samples in cyclic prefix regions of adjacent symbols; and using the correlation points to produce a digital signal quality metric. Receivers that implement the method are also provided.
Abstract:
A customer relationship management (CRM) method using IBOC-radio signals is provided. A message in the radio signal is parsed to obtain a key. The key is compared to a plurality of stored keys. When the received key matches a stored key, a data structure associated with the message is outputted. A device comprising a lookup table with a plurality of stored keys, a tuner unit that receives a CRM in an IBOC signal, and a controller in electrical communication with the lookup table and tuner is provided. The controller comprises (i) instructions for comparing a key in the CRM to one or more stored keys in the plurality of stored keys and (ii) instructions for permitting the display of a display text associated with the received key when there is a match between the received key and a key in the plurality of stored keys.
Abstract:
In one embodiment, a receiver front end circuit can receive and process multiple radio frequency (RF) signals and output downconverted signals corresponding to these signals. In turn, multiple signal processors can be coupled to this front end. Specifically, a first signal processor can receive and process the downconverted signals to output a first signal obtained from content of a first RF signal, and a second signal processor can receive and process the downconverted signals to output a second signal obtained from content of a second RF signal. In addition, the apparatus may include a detection circuit coupled to the receiver front end circuit to detect presence of at least the second signal and enable the second signal processor responsive to the detected presence.
Abstract:
Methods and systems for adjusting a sampling rate of a digital radio receiver are disclosed that comprise the steps of receiving from a decoder a first frame of data having a first number of samples; determining at the digital radio receiver a phase difference between a receiver clock and a transmitter clock; generating at the digital radio receiver a second frame of data having a second number of samples, wherein the second number of samples depends on the phase difference between the receiver clock and the transmitter clock such that the second number of samples is less than the first number of samples if the transmitter clock is ahead of the receiver clock, and the second number of samples is greater than the first number of samples if the receiver clock is ahead of the transmitter clock; outputting the second frame of data having the second number of samples; and requesting a next frame of data from the decoder at a time that is earlier than a processing time for the first number of samples if the transmitter clock is ahead of the receiver clock and at a time that is later than the processing time for the first number of samples if the receiver clock is ahead of the transmitter clock such that the next frame of data from the decoder and a next transmitter frame are synchronized, and wherein whether the second number of samples is greater than or less than the first number of samples is determined by whether the sampling rate is increased or decreased.
Abstract:
A method and apparatus increase the time and frequency diversity of a multi-stream signal in a DAB system. A plurality of audio streams are divided into four (4) digital sub-streams, C00, C01, C10, and C11. Each sub-stream C00, C01, C10, and C11 is assigned a unique frequency band, and time slot. A first core sub-stream C10 is mapped to one frequency partition and a second core sub-stream C00 is mapped to another frequency partition and delayed relative to the first core sub-stream. Similarly, two enhancement sub-streams C11 and C01 are mapped to different frequency partitions and are time delayed relative to each other and the core sub-streams. The two core sub-streams C00 and C10 can have a maximum separation across both the time and frequency axes.
Abstract:
Methods and systems for advancing to another service from a plurality of services in a digital radio broadcast receiver are described. The methods and systems include the steps of receiving an instruction to advance to another service from a man-machine interface of the digital radio broadcast receiver, selecting an entry from a set of entries stored in a memory of the digital radio broadcast receiver responsive to the instruction, wherein each entry identifies a service, and wherein at least some of said services correspond to services identified as receivable, tuning to a first service identified by the selected entry, rendering content received on the first service at the digital radio broadcast receiver, and updating the set of entries stored in the memory of the digital radio broadcast receiver based on at least one criteria.
Abstract:
A method performed by a radio receiver comprises: receiving digital radio broadcast (DRB) signals on respective frequency channels: acquiring a list that identifies which of the DRB signals are all-digital signals: receiving a tune command to tune to a particular DRB signal among the DRB signals; and upon determining that the particular DRB signal is an all-digital signal based on the list: playing muted audio: while playing muted audio, tuning to the particular DRB signal based on the tune command and performing digital signal acquisition of the particular DRB signal; and when the digital signal acquisition is complete, performing digital demodulation of the particular DRB signal to recover digital audio, and switching from playing muted audio to playing digital audio.
Abstract:
According to an aspect of the present invention, there is provided a method for providing additional bandwidth to receivers that can decode a higher modulation comprising trading a peak-to-average power ratio (PAPR) reduction induced constellation noise of all or a subset of in-band on-channel (IBOC) carriers within an orthogonal frequency division multiplexing (ODFM) waveform with data carrying superposition modulation.
Abstract:
A system includes a processor configured to determine that transmission data indicates that first data was transmitted via a digital radio channel and that reception data indicates that second data was received via the digital radio channel. The first data is transmitted concurrently with transmission of an analog signal. The processor is configured to detect an error in transmission of the first data based on a comparison of adjacent portions of the first data to non-adjacent portions of the second data. The processor is configured to, in response to detecting the error, initiate display of a default image concurrently with output of an audio signal that is based on the analog signal and to initiate retransmission of the first data to cause second particular data to be output subsequent to the output of the default image. The second particular data corresponds to the retransmitted first data.
Abstract:
A method for processing a digital audio broadcast signal in a radio receiver, includes: receiving a hybrid broadcast signal; demodulating the hybrid broadcast signal to produce an analog audio stream and a digital audio stream; and using a normalized cross-correlation of envelopes of the analog audio stream and the digital audio stream to measure a time offset between the analog audio stream and the digital audio stream. The time offset can be used to align the analog audio stream and the digital audio stream for subsequent blending of an output of the radio receiver from the analog audio stream to the digital audio stream or from the digital audio stream to the analog audio stream.