Abstract:
A system, apparatus and method is disclosed for multiband wireless communication. Frequency bands and/or transmission formats are identified as available within a range for wireless communication. Signal quality metrics for each frequency band are evaluated by a receiver to identify qualified frequency bands. The qualified frequency bands can be ranked according to one or more signal quality metrics, where the list of qualified bands can be communicated to a transmitter. The transmitter is arranged to evaluate the list of qualified bands and select a communication method based on the available frequency bands and a selected communication optimization scenario. Multiple frequency bands and communication methods can be utilized by the transmitter such that a combination of licensed, unlicensed, semilicensed, and overlapped frequency bands can be simultaneously used for communication. The receiver continually monitors communications and can report link performance to the transmitter for adaptive control of the selected communication methods.
Abstract:
Adjusting parameters of a waveform includes facilitating wireless communication between a transmitting node and receiving nodes, where the transmitting node communicates with a receiving node over a channel. Spectrum conditions are estimated, where a spectrum condition describes spectrum utilization in the vicinity of surrounding nodes. Channel conditions are estimated, where a channel condition describes a channel of the plurality of channels. Waveform parameters are adjusted in response to the spectrum conditions and the channel conditions.
Abstract:
Data streams stored in buffers are modulated by modulation sections. Multipliers multiply the signals output from the modulation sections by weights output from a weight control section. The signals output from the multipliers are added up by addition sections, subjected to radio transmission processing by transmission radio sections and sent through antennas. A buffer control section controls the buffers based on a retransmission count output from a retransmission count detection section. The weight control section outputs weights different from weights at the time of previous transmission to the multipliers every time data is retransmitted. This allows a diversity gain at the time of data retransmission to be increased even if a time variation of the propagation path environment for radio signals is slow.
Abstract:
An air time management method and apparatus for multi-access channel networks is provided, suitable for use when terminal stations operate with adaptive modulation. A specific modulation (default modulation) is defined for each terminal station (in a planning phase. During operation, when bandwidth is to be allotted to an uplink or downlink communication, a base station checks whether the concerned terminal station is operating with a modulation more robust (e.g. less efficient) than the default modulation. In so, the base station allocates a time slot to the communication that has a duration sufficient for transmitting less than all of a particular set of data with the default modulation. If not, the base station allocates a time slot to the communication that has a duration sufficient for transmitting all of a particular set of data with the current modulation.
Abstract:
A wireless communication apparatus comprises a determination unit to determine whether to increase the number of reference signals to be included in a downlink signal based on an uplink signal. The wireless communication apparatus further comprises a mapping unit to map reference signals based on a determination made by the determination unit.
Abstract:
Methods and apparatus for processing channel quality information (CQI) and scheduling resources subject to cooperative resource allocation based on the CQI are provided. To convey the CQI for protected/unprotected subframes in a single report, a new vector CQI format may be utilized. Two alternatives for CQI processing this vector format and the advantages of each are described. In the first alternative, a single entry from the CQI vector is selected for processing by a downlink scheduler and/or other media access control (MAC) blocks (e.g., a PHICH, DCI power control, and/or PDCCH scheduler). In the second alternative, the selection from the CQI vector is made on a per-subframe basis, and both the subframe and the selected CQI element are processed by the downlink scheduler and/or the other MAC blocks. In this manner, better scheduling decisions may be made using the CQI vector.
Abstract:
A method for communicating with a network is presented. The method includes receiving an assignment of first timeslots for uplink communications, and receiving a first data block having a first block sequence number and including an instruction to reduce monitoring to a set of timeslots. The set of timeslots has a number of timeslots less than a number of timeslots to be monitored in accordance with the assignment. The method includes determining that at least one second data block having a second block sequence number that is less than the first block sequence number was not successfully received from the network, reducing a number of timeslots monitored to the set of timeslots, and receiving a retransmission of the at least one second data block from the network using a timeslot in the set of timeslots.
Abstract:
In order to avoid unknown behavior of a user equipment, the present invention provides a method of improving Hybrid Automatic Repeat Request, known as HARQ, operation for a network in a wireless communications system. The method includes adding a HARQ information information element, abbreviated to IE, and a Multi-Input Multi-Output, known as MIMO, parameters IE into a radio resource control message, wherein the radio resource control message is used by the network to assign, replace or release a physical channel used by the user equipment, and transmitting the radio resource control message to the user equipment.
Abstract:
Respective codewords of quantization codebooks corresponding to a number of data streams are selected based on channel information estimated by a received training symbol. A stream mode is selected among stream modes to determine a modulation method applied to each data stream. The data stream is detected by using the codeword corresponding to the quantization codebook of the data stream corresponding to the selected stream mode as a precode matrix, and the detected data stream is modulated. In this case, a receiving apparatus performs a feedback operation so that indexes of the selected stream mode and the codeword used as the precode matrix may be transmitted to the transmitting apparatus. The transmitting apparatus selects the number of transmitted data streams and the modulation method based on the transmitted index of feedback streams by the feedback operation.
Abstract:
A radio communication system including: a base station apparatus; and a mobile station apparatus, the mobile station apparatus includes: a receiver which receives data signal transmitted from the base station apparatus; a controller which switches a unit of grouping to the data signal and groups the data signal, according to one parameter or a combination of a plurality of parameters out of a type of a channel, a type of modulation scheme and encoding rate, an assigned resource amount, or a number of transmitting antennas of the mobile station apparatus, when an ACK signal or an NACK signal to the data signal is transmitted; and a transmitter which transmits the ACK signal or the NACK signal in each the group, and the base station apparatus includes: a transmitter which transmits the data signal; and a receiver which receives the ACK signal or the NACK signal.