Abstract:
A solid-state image pickup device including a pixel section arranged with multiple pixel circuits in matrix having functions for converting an optical signal to an electrical signal and for accumulating the electrical signal depending on an exposure time, and a pixel driving section capable of driving through a control line to reset, accumulate, transfer, and output signal electric charge of the pixel section. The pixel section may have a pixel shared structure arranged with one selection control line, one reset control line, and multiple transfer control lines, including a readout-pixel section and an unread-pixel section in its entirety. The pixel driving section includes a pixel control section where an unread-pixel is normally fixed in a reset state. When reading a readout-pixel in a shared relationship, if its address is selected or a selection signal becomes active, the unread-pixel reset-state is cancelled to turn into an unread state.
Abstract:
The image sensor includes a plurality of column lines, a plurality of active road circuits and a selection circuit. The plurality of column lines are each connected to a corresponding one of a plurality of pixels. The plurality of active road circuits are each connected to a corresponding one of the plurality of column lines. The selection circuit is configured to enable a portion of the plurality of active road circuits based on a plurality of column selection signals.
Abstract:
The present invention reduces differences in the influence of electric charge leakage from a non-read out region into multiple read out regions adjacent to a non-read out region. Reset scanning of that row in the non-read out region which adjoins the first or second read out region is started before read out scanning of the first and second read out regions.
Abstract:
A solid-state imaging device having a pixel array section in which pixels including photoelectric conversion elements are arranged in a matrix form, and sweeping out unnecessary charges by setting a predetermined number, two or more, of adjacent rows or a predetermined number, two or more, of adjacent columns, in the pixel array section, to a single group, and by applying a shutter pulse in units of groups before storing signal charges, and sequentially reading the signal charges in the units of groups. In the solid-state imaging device, a pre-shutter pulse is applied to pixels belonging to at least a single row or a single column within a succeeding group and adjacent to a preceding group, prior to the shutter pulse, before a reading timing for the preceding group, to sweep out unnecessary charges stored in the pixels.
Abstract:
An object of the present invention is to prevent a sensitivity difference between pixels. There are disposed plural unit cells each including plural photodiodes 101A and 101B, plural transfer MOSFETs 102A and 102B arranged corresponding to the plural photodiodes, respectively, and a common MOSFET 104 which amplifies and outputs signals read from the plural photodiodes. Each pair within the unit cell, composed of the photodiode and the transfer MOSFET provided corresponding to the photodiode, has translational symmetry with respect to one another. Within the unit cell, there are included a reset MOSFET and selecting MOSFET.
Abstract:
When a conventional circuit is used in an image sensor which employs a pixel sharing technique, selection of pixels is not properly performed, that is, an invalid operation may be performed. To address this problem, a first storage unit which stores an address of a reading row, a second storage unit which stores an address of a shutter row, and a third storage unit for controlling an element shared by a plurality of pixels are provided in a row selection unit.
Abstract:
Programmable data readout for optical image sensors is disclosed herein. By way of example, vertical skipping and vertical mixing functionality is provided that is responsive to commands, enabling dynamic selectivity and processing of optical sensor data. A data output control system can be incorporated with or coupled to data readout circuitry of an optical sensor. The output control system comprises a vertical skipping engine that can dynamically select a subset of data for output in response to one or more skipping commands, and a vertical mixing engine that can act upon subsets of data in accordance with processing functions called by respective mixing commands. The disclosure provides simplification of selective data readout and processing for image sensors, potentially reducing design, testing, and maintenance overhead, as well as cost and number of integrated circuit components.
Abstract:
An image sensing apparatus comprises: a pixel array in which a plurality of pixels are arrayed in a row direction and column direction; a selection unit configured to select a row of the pixel array; and a readout unit configured to read out signals from the pixels of the row selected by the selection unit, wherein, when the readout unit reads out signals from the pixels of not all rows but some rows in the pixel array, the selection unit resets the pixels of rows in adjacent regions adjacent to readout rows from which signals are read out, and the pixel array includes rows, in which the pixels are not reset by the selection unit, in regions other than the readout rows and the adjacent regions.
Abstract:
In an XY address type solid-state imager apparatus comprising a solid-state imager having a plurality of pixels two-dimensionally arranged, and horizontal and vertical scanning circuits to read signals of the pixels, the scanning circuits each have a progressive scanning circuit to progressively read pixel signals by a first scanning control signal, and an interlace scanning circuit to read pixel signals with an interlaced manner by a second scanning control signal different from the first scanning control signal, and arbitrarily carries out combining of progressive reading and interlace reading in one frame in accordance with a combination of the respective scanning control signals, and reads pixel signals.
Abstract:
An imaging device includes an imagine lens, an imaging sensor having a color filter array with color filters of a plurality of colors having a plurality of pixels which are arranged on a light-receiving surface, a computing section obtaining a pixel value of an objective pixel by adding pixel values of a plurality of adjacent pixels which are adjacent to the objective pixel and which have one of the color filters of same color as the objective pixel among pixel values output from the imaging sensor, and a control section making the computing section compute, while shifting the objective pixel one by one in one direction, a pixel row formed of pixel values of the objective pixel in the one direction with respect to each predetermined pixel width in other direction, and generating an image thinned out at the predetermined pixel width in the other direction.