Modular wearable sensor device
    93.
    发明授权

    公开(公告)号:US11116447B2

    公开(公告)日:2021-09-14

    申请号:US15063393

    申请日:2016-03-07

    Abstract: A wearable sensor and method for providing a wearable sensor are disclosed. In a first aspect, the wearable sensor comprises a first module, wherein the first module comprises a top layer, a printed circuit board (PCB) layer, and a bottom layer. The bottom layer comprises a double adhesive layer that adheres to both the PCB layer and the user. The bottom layer includes at least two openings to house at least two electrodes for monitoring of a user. The wearable sensor further comprises a second module coupled to the first module, wherein the first module is disposable and the second module is reusable. In a second aspect, the method comprises providing the aforementioned wearable sensor.

    Segmented elctrode
    94.
    发明授权

    公开(公告)号:US11116434B2

    公开(公告)日:2021-09-14

    申请号:US16095729

    申请日:2017-10-16

    Abstract: Disclosed is a vital sign monitoring system. The system comprises a segmented electrode forming an in-plane electrode array, wherein the electrode comprise a skin contacting skin adhering contact layer mounted on an electrode backing material, a deformation sensor arranged for identifying deformation information of the electrode, a signal processor arranged to receive a vital sign signal from the electrode and process the deformation information to remove artefacts from the vital sign signal, wherein the electrode comprises multiple electrode segments and wherein the signal processor is arranged to select that electrode segment that has a lowest deformation of all electrode segments of the electrode.

    Biometric information sensor
    97.
    发明授权

    公开(公告)号:US11006839B2

    公开(公告)日:2021-05-18

    申请号:US15431866

    申请日:2017-02-14

    Abstract: A biometric information sensor includes a flexible substrate, an adhesive, a heartbeat signal detector, an electrocardiographic signal detector, a pulse wave detector, and a signal processor. The signal processor calculates an electrocardiographic peak estimated value resulting from estimating the wave of an electrocardiographic signal detected by the electrocardiographic signal detector from a heartbeat signal detected by the heartbeat signal detector based on the heartbeat signal and the electrocardiographic signal. The signal processor estimates a pulse wave transmit time based on the calculated electrocardiographic peak estimated value a photoplethysmographic signal detected by the pulse wave detector.

    Composites and devices for interfacing electronics to biological tissue

    公开(公告)号:US12201741B2

    公开(公告)日:2025-01-21

    申请号:US17022004

    申请日:2020-09-15

    Abstract: Composites, are provided, the composites comprising: mixed conducting particles; and an ion conducting scaffolding matrix. In some embodiments, the mixed conducting particles are made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). In some embodiments, the ion conducting scaffolding matrix includes a chitosan (CS)-based polymer. In some embodiments, devices are provided, the devices comprising: a composite comprising mixed conducting particles and an ion conducting scaffolding matrix; and three electrodes, wherein: each of the three electrodes is in contact with the composite; a first pair of the three electrodes are on opposite sides of the composite and are a distance h apart; a second pair of the three electrodes are on a same side of the composite and are a distance d1 apart; a particle size of the mixed conducting particles is between h and d1; a mean-free-path of the mixed conducting particles is less than d1; and the composite behaves like an anisotropic conductor.

    Tri-axial seismocardiography devices and methods

    公开(公告)号:US12201432B2

    公开(公告)日:2025-01-21

    申请号:US17081287

    申请日:2020-10-27

    Abstract: A computer-implemented method may comprise providing a wireless tri-axial seismocardiography (SCG) device configured to measure and time-stamp movements of a user's chest caused by the user's heart beats; positioning the SCG device on the user's chest in a predetermined orientation and initiating a test; using the positioned SCG device, detecting, sampling, digitizing and time-stamping movement vectors of the user's chest over a predetermined period of time in each of x, y and z directions; storing the time-stamped digitized movement vectors in a memory of the SCG device and sending the time-stamped digitized movement vectors to at least one of the app on the mobile device and the remote server over a computer network; receiving, by the app on the mobile device, a plurality of fiduciary markers from the remote server, the plurality of fiduciary markers being detected from or derived using the time-stamped digitized movement vectors in each of x, y and z directions; and generating a report on the mobile device using at least some of the plurality of fiduciary markers, the report including an indication of the health of the user's heart.

Patent Agency Ranking