摘要:
A method for isomerizing a hydrohalofluoroolefin isomer to produce a corresponding hydrohalofluoroolefin isomer includes a step contacting a composition that contains at least a hydrohalofluoroolefin isomer and that has been adjusted to 100 ppm or lower in moisture concentration, with a catalyst in a gas phase, thereby obtaining a product. This method makes it possible to suppress the catalyst performance lowering.
摘要:
Disclosed are processes for a high temperature isomerization reaction converting (E)-1-chloro-3,3,3-trifluoropropene to (Z)-1-chloro-3,3,3-trifluoropropene. In certain aspects of the invention, such a process includes contacting a feed stream with a heated surface, where the feed stream includes (E)-1-chloro-3,3,3-trifluoropropene or mixture of (E)-1-chloro-3,3,3-trifluoropropene with (Z)-1-chloro-3,3,3-trifluoropropene. The resulting product stream includes (Z)-1-chloro-3,3,3-trifluoropropene and (E)-1-chloro-3,3,3-trifluoropropene, where the ratio of (Z) isomer to (E) isomer in the product stream is higher than the ratio feed stream. The (E) and (Z) isomers in the product stream may be separated from one another.
摘要:
The present invention relates to a process for modifying the fluorine distribution in a hydrocarbon compound in the presence of a catalyst, characterized by the use, as catalyst, of a solid composition comprising at least one component containing chromium oxyfluoride or fluoride of empirical formula CrxM(1-x)OrFs, where 2r+s is greater than or equal to 2.9 and less than 6, M is a metal chosen from columns 2 to 12 of the Periodic Table of the Elements, x has a value from 0.9 to 1, s is greater than 0 and less than or equal to 6 and r is greater than or equal to 0 and less than 3, the said solid composition having a crystallinity of less than 20% by weight. The present invention also relates to the solid composition per se.
摘要:
The present disclosure includes various manufacturing and separation processes for the production of (Z)-1-chloro-3,3,3-trifluoropropene from (E)-1-chloro-3,3,3-trifluoropropene. The efficient separation of (Z)-1-chloro-3,3,3-trifluoropropene from unreacted (E)-1-chloro-3,3,3-trifluoropropene may allow for the ability to recycle unreacted starting materials and to maximize raw material utilization and product yields.
摘要:
A new process for the preparation of 5-fluoro-1H-pyrazoles of the general formula (I) as described herein and further reactions with this compound.
摘要:
The present invention provides a method of producing 2,3,3,3-tetrafluoropropene (HFO-1234yf), wherein the method comprises two or more reaction steps, at least one of said reaction steps comprising the production of 1,3,3,3-tetrafluoropropene (HFO-1234ze) and/or one or more HFO-1234ze precursors from one or more HFO-1234yf precursors, wherein at least a portion of the HFO-1234ze is recovered.
摘要:
The present invention relates to a process for the preparation of a compound of formula I (I), comprising reacting a compound of formula II (II), with a brominating agent in the presence of an acidic catalyst to a compound of formula III (III), and reacting the compound of formula III in tetrahydrofuran or 2-methyl-tetrahydrofuran with potassium tert-butoxide to a compound of formula I.
摘要:
The invention relates to a process for preparing a C3-6 (hydro)fluoroalkene comprising dehydrohalogenating a C3-6 hydro(halo)fluoroalkane in the presence of a zinc/chromia catalyst, wherein the C3-6 (hydro)fluoroalkene produced is isomerized in the presence of the zinc/chromia catalyst.
摘要:
The present invention relates to methods, process, and integrated systems for economically producing (E)-1-chloro-3,3,3-trifluoropropene via vapor phase and/or liquid processes.
摘要:
Processes for the production of chlorinated propenes are provided. The processes proceed through the production of cyclic intermediate that is thereafter readily converted to a desired chloropropane, e.g., via selective pyrolysis. The process may be conducted using starting materials that are readily commercially available and/or that may be reacted safely in standard laboratory equipment so that capital cost savings may be seen. The process does not require the use of catalysts and yet, process conditions less extreme than many conventional processes for the production of chlorinated propenes are suitable, so that raw material and utility cost savings are also possible.