Abstract:
An impedance matching structure is disposed on a multilayer circuit board for matching an impedance of a transmission line for transmitting an electronic signal. At least one redundant conducting section is coupled to a conductive member of the transmission line between input and output terminals of the transmission line. The conductive member and the redundant conducting section are disposed in a corresponding plating hole. At least one grounding member disposed adjacent to but separated from either or both of the conductive member of the transmission line and the at least one redundant conducting section in a capacitor structure for impedance matching. The at least one grounding member includes a first grounding member penetrating through at least two layers of the multilayer circuit board.
Abstract:
A mobile navigation system includes: a radar antenna carried by the vehicle, and emitting first and second sensing beams at first and second time points, respectively; first and second retro-directive antennas or beam-reflecting objects disposed at first and second positions, respectively, and being a specific distance from each other; and a processing device electrically coupled to the radar antenna. The first and second retro-directive antennas or beam-reflecting objects respectively return first and second retro waves corresponding to a direction of the first sensing beam, and respectively return third and fourth retro waves corresponding to a direction of the second sensing beam. The processing device receives the first, second, third and fourth retro waves, and determines a moving direction of the vehicle according to the first, second, third and fourth retro waves and the specific distance.
Abstract:
A self-monitoring tire includes a tire body and a tire pressure sensor. The tire body includes a tread rubber for contact with ground, a bead for coupling to a rim, and a sidewall structure including two portions disposed at opposite sides of the tread rubber, and extending from opposite sides of the tread rubber to the bead. The tire pressure sensor is disposed between respective outward surfaces of the two portions of the sidewall structure, and secured on or embedded in either one of the two portions of the sidewall structure.
Abstract:
An impedance matching structure is disposed on a circuit board for matching an impedance of a transmission line for transmitting an electronic signal. The structure includes: at least two redundant conducting sections coupled to different points between an input terminal and an output terminal of the transmission line, wherein the redundant conducting sections are apart from one another, and a first terminal of each of the redundant conducting sections is coupled to the transmission line, while a second terminal of each of the redundant conducting sections is apart from the transmission line; and at least one grounded conducting section, each of which corresponds to one of the redundant conducting sections, and surrounds in separation from the corresponding redundant conducting section, wherein each of the at least two redundant conducting sections is disposed in a corresponding plating hole.
Abstract:
The present invention is to provide a chassis switch, which comprises a chassis for accommodating a designated number of line cards therein; a backplane installed on the back side of the chassis and having a plurality of connectors disposed thereon; at least one line card plugged into one of the connectors corresponding thereto via a front side of the chassis and each having an access switch chip adapted to switch local network signals and an interconnect switch chip adapted to switch the signals between ports of the at least one line card; and a loop adapted to connect the corresponding ports of the access switch chip and the interconnect switch chip respectively through the connectors, so as to enable each line card plugged into the chassis switch to perform a local network switching function and a switching function between the at least one line card.
Abstract:
The present invention is to provide a fan control circuit, which includes a filter circuit for converting a pulse-width modulation (PWM) voltage signal into a DC voltage signal; an amplifier circuit having an input end for receiving the DC voltage signal and a static voltage signal and generating an amplified voltage signal at an output end thereof; a current expansion circuit configured to perform current expansion on the amplified voltage signal and thereby generate a driving voltage signal for a fan; and a feedback circuit connected between another input end of the amplifier circuit and an output end of the current expansion circuit so that magnitude of the driving voltage signal is in direct proportion to the duty cycle of the PWM voltage signal and is greater than or equal to a lowest driving voltage value of the fan when the duty cycle of the PWM voltage signal approaches zero.
Abstract:
The present invention is to provide a resonance circuit, which is applicable to a circuit board of a first electronic device provided thereon with a circuit layout, a high-speed connector (e.g., a USB 3.0 connector) at a lateral side of the circuit layout for connecting with a second electronic device, and an antenna for enabling the circuit board to receive and transmit wireless information at a predetermined frequency. The connector and antenna are respectively connected to first and second connecting points of the circuit layout, and the distance between the two connecting points is not less than one wavelength. The resonance circuit is connected to a third connecting point of the circuit layout provided between the above two connecting points, such that the resonance frequency of the resonance circuit covers the reception and transmission frequencies of the antenna, for effectively inhibiting interference between the connector and the antenna.
Abstract:
In an RF device, an RF circuit includes an RF circuit connector optionally coupling thereto an RF element for transmitting or receiving an RF signal; and a power supply module selectively outputting power to the RF circuit connector according to a control signal. In addition, a testing circuit includes a first filter unit having a first external terminal electrically coupled to a testing signal and a second external terminal electrically coupled to the RF circuit, wherein the first filter unit is configured to allow the testing signal to enter the RF circuit while blocking an RF signal transmitted in the RF circuit from entering the testing circuit; and a testing-result informing unit having an external input electrically coupled to the first external terminal, and determining contents of the control signal according to an electric level at the external input.
Abstract:
In an RF device, an RF circuit includes an RF circuit connector optionally coupling thereto an RF element for transmitting or receiving an RF signal; and a power supply module selectively outputting power to the RF circuit connector according to a control signal. In addition, a testing circuit includes a first filter unit having a first external terminal electrically coupled to a testing signal and a second external terminal electrically coupled to the RF circuit, wherein the first filter unit is configured to allow the testing signal to enter the RF circuit while blocking an RF signal transmitted in the RF circuit from entering the testing circuit; and a testing-result informing unit having an external input electrically coupled to the first external terminal, and determining contents of the control signal according to an electric level at the external input.
Abstract:
In an intelligent monitoring system, a wireless signal processing device transmits a wireless signal toward a first target object in a monitored area, receives a wireless status signal, and generates a monitoring signal corresponding to the first target object according to the wireless status signal. In addition, at least one signal-relaying device receives a back scattering signal, which is reflected from the first target object in response to the wireless signal, transfers the back scattering signal into the wireless status signal, and transmits the wireless status signal to the wireless signal processing device. The signal-relaying device includes a power supply device for supplying power for operations of the signal-relaying device, and the signal-relaying device is disposed in the monitored area between the first target object and the wireless signal processing device.