Abstract:
A frequency selecting module for a touch system includes a storage unit, for storing a sum of at least one of a plurality of sensing signals of a plurality sensing channels in the touch system; a spectrum calculating unit, for transforming the sum of the at least one of the plurality of sensing signals stored in the storage unit to generate a spectrum data and storing the spectrum data to the storage unit; and a selecting unit, for generating an adjusting signal according to the spectrum data to select one of a plurality of operation frequencies as a working frequency of the plurality of sensing signals.
Abstract:
The LCD device comprises a plurality of scan groups and a plurality of data electrodes; each scan group comprises a plurality of scan electrodes. The driving method comprises the following steps. First the scan driving circuit provides a plurality of scan signals to the plurality of scan electrodes of the plurality of scan groups, respectively. Each scan signal includes at least a select signal, at least a non-select signal, at least a select cycle, and at least a non-select cycle. The select signal is located in the select cycle, while the non-select signal, the non-select cycle. When an Nth scan electrode is located in the select cycle, an (N−1)th or (N+1)th scan electrode of the plurality of scan electrodes is located in the non-select cycle. Then, the data driving circuit provides a data signal to each of the data electrodes according to a plurality of display data for driving the LCD device to display an image by using the plurality of scan signals and the plurality of data signals. Thereby, the imbalance wire coupling effect among scan electrodes can be eliminated and thus improving the display efficiency of the LCD device.
Abstract:
A driving method used in a liquid crystal display (LCD) is used for preventing or mitigating an image sticking occurring on a screen of the LCD. The driving method includes driving a data line outputted to a liquid crystal capacitor on the screen with a first voltage signal; and driving a reference voltage line outputted to the liquid crystal capacitor with a second voltage signal; wherein the second voltage signal and the first voltage signal have inverse voltage polarities.
Abstract:
A driving module for a display device includes a first driving unit, for generating a plurality of data driving signals to a plurality of data lines of the display device according to a first control signal; and a control unit, for generating the first control signal to the first driving unit and a second control signal to a second driving unit of the display device; wherein the control unit controls the second driving unit to generate a plurality of gate driving signals to a plurality of scan lines of the display device via the second control signal, and durations of a plurality of gate enable periods in the plurality of gate driving signals are different.
Abstract:
A display device includes a plurality of driving units configured along with a first axis; and a plurality of power supplying units configured along with the first axis for generating a plurality of power signals, wherein each of the plurality of power signals is coupled to at least one of the plurality of driving units.
Abstract:
The present disclosure provides a capacitor voltage information sensing circuit. The capacitor voltage information sensing circuit includes a mixer and an analog filter. The mixer includes a first input terminal for receiving a reference signal, a second input terminal for receiving a voltage signal, the voltage signal includes capacitor voltage information and a noise when a touch occurs, a first output terminal for outputting a first differential signal according to the voltage signal and the reference signal, and a second output terminal for outputting a second differential signal according to the voltage signal and the reference signal. The analog filter is coupled to the mixer for generating a first low-frequency signal and a second low-frequency signal according to the first differential signal and second differential signal.
Abstract:
A power supply system includes a control module for generating a control signal; a first charging pump module, coupled to the control module, for generating an adjustment charging value according to the control signal, and outputting a charging voltage according to the adjustment charging value and a conduction voltage source; an amplifying module, coupled to the first charging pump module, for utilizing the charging voltage to generate an amplifying voltage; and a load module, coupled to the amplifying module, for processing a dynamic charging operation according to the amplifying voltage.
Abstract:
An active probe card capable of improving testing bandwidth of a device under (DUT) test includes a printed circuit board; at least one probe needle, affixed to a first surface of the printed circuit board for probing the DUT; at least one connection member, electrically connected to the at least one probe needle; and an amplification circuit, formed on the printed circuit board and coupled to the at least one connection member for amplifying an input or output signal of the DUT.
Abstract:
The present disclosure provides a method of reusing electrical energy for a charge pump. The method comprises operating in a reusing phase after a boosting phase is completed; retrieving energy of parasitic capacitance in the reusing phase; and reusing the energy of the parasitic capacitance for an internal circuit.
Abstract:
A power circuit includes a first charge pump for converting a supply voltage into a first high voltage and a first low voltage, at least one second charge pump, each for increasing the first high voltage by a first variance value to a second high voltage, and at least one third charge pump, each for decreasing the first low voltage by a second variance value to a second low voltage. A difference between the first high and low voltages is less than a breakdown threshold. The second and third variance margins are less than the breakdown threshold.