Devices and methods for adaptive fast-charging of mobile devices

    公开(公告)号:US10256650B2

    公开(公告)日:2019-04-09

    申请号:US14574409

    申请日:2014-12-18

    Applicant: StoreDot Ltd.

    Abstract: The present invention discloses devices and methods for adaptive fast-charging of mobile devices. Methods include the steps of: firstly determining whether a first connected component is charged; upon firstly determining the first connected component isn't charged, secondly determining whether the first connected component is adapted for rapid charging; and upon secondly determining the first connected component is adapted for rapid charging, firstly charging the first connected component at a high charging rate via a charging device. Preferably, the charging device is selected from the group consisting of: a rapid charger and a slave battery. Preferably, the first connected component is selected from the group consisting of: a mobile device and a slave battery. Preferably, the high charging rate is selected from the group consisting of: greater than about 4 C, greater than about 5 C, greater than about 10 C, greater than about 20 C, greater than about 30 C, and greater than about 60 C.

    REGULATION OF METAL ION LEVELS IN LITHIUM ION BATTERIES

    公开(公告)号:US20190089016A1

    公开(公告)日:2019-03-21

    申请号:US15706829

    申请日:2017-09-18

    Applicant: StoreDot Ltd.

    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.

    IN-OPERATION LITHIATION ACCORDING TO SOH MONITORING

    公开(公告)号:US20190089015A1

    公开(公告)日:2019-03-21

    申请号:US15706835

    申请日:2017-09-18

    Applicant: StoreDot Ltd.

    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.

    ELECTRODE-PREPARATION SYSTEMS AND METHODS
    104.
    发明申请

    公开(公告)号:US20180315990A1

    公开(公告)日:2018-11-01

    申请号:US16012934

    申请日:2018-06-20

    Applicant: StoreDot Ltd.

    Abstract: Methods, stacks and electrochemical cells are provided, in which the cell separator is surface-treated prior to attachment to the electrode(s) to form binding sites on the cell separator and enhance binding thereof to the electrode(s), e.g., electrostatically. The cell separator(s) may be attached to the electrode(s) by cold press lamination, wherein the created binding sites are configured to stabilize the cold press lamination electrostatically—forming flexible and durable electrode stacks. Electrode slurry may be deposited on a sacrificial film and then attached to current collector films, avoiding unwanted interactions between materials and in particular solvents involved in the respective slurries. Dried electrode slurry layers may be pressed or calendared against each other to yield thinner, smother and more controllably porous electrodes, as well as higher throughput. The produced stacks may be used in electrochemical cells and in any other type of energy storage device.

    SUPERCAPACITOR-EMULATING FAST-CHARGING BATTERIES AND DEVICES

    公开(公告)号:US20180175634A1

    公开(公告)日:2018-06-21

    申请号:US15582066

    申请日:2017-04-28

    Applicant: StoreDot Ltd.

    Inventor: Daniel ARONOV

    Abstract: Methods and supercapacitor-emulating fast-charging batteries are provided. Methods comprise configuring a fast-charging battery to emulate a supercapacitor with given specifications by operating the fast-charging battery only within a partial operation range which is defined according to the given specifications of the supercapacitor and is smaller than 20%, possibly 5% or 1%, of a full operation range of the fast-charging battery. Devices are provided, which comprise control circuitry and a modified fast-charging lithium ion battery having Si, Ge and/or Sn-based anode active material and designed to operate at 5 C at least and within a range of 5% at most around a working point of between 60-80% lithiation of the Si, Ge and/or Sn-based anode active material, wherein the control circuitry is configured to maintain a state of charge (SOC) of the battery within the operation range around the working point.

Patent Agency Ranking