Abstract:
Board-to-board connectors that may consume a reduced amount of space in an electronic device by having a reduced height, provide a durable and reliable connection, and may be easy to manufacture. In one example, a board-to-board connector having a reduced height may reside at least partially in a recess or opening in a printed circuit board or other substrate.
Abstract:
An electronic device may be provided with a display. The display may include display layers characterized by an active area and backlight structures that provide backlight to the active area. To accommodate components such as a button, an edge portion of a light guide plate in the backlight structures that does not overlap the active area is bent out of the plane of the light guide plate. The bent edge portion of the light guide plate may be formed by molding clear plastic in a die or by bending a flexible sheet of clear polymer. Flared structures may be formed on the flexible sheet of clear polymer to help guide light from light-emitting diodes into the flexible sheet of clear polymer. The flared structures may be formed by applying resin coating layers to the flexible sheet of clear polymer.
Abstract:
Brackets may be mated with or coupled to an opening of an electronic device enclosure or housing for receiving plug connectors to reinforce the receptacle connector and/or device housing and potentially reduce damage/breakage. For example, a bracket can have a front face with a curvature. A back face of the bracket can include a first opening that communicates with a cavity. The cavity can be defined at least in part by upper and lower opposing inner surfaces, the lower inner surface including a portion that extends parallel to a portion of the bracket front face. The bracket can also include a hollow protrusion extending from the bracket front face in a front direction. The hollow protrusion can include an opening that communicates with the opening of the back face and extends through the hollow protrusion. Methods for manufacturing the connector bracket are also provided.
Abstract:
Electronic devices may include displays. A display may include backlight components that provide backlight illumination for the display. Backlight components may include a light guide plate that distributes light from a light source across the display. A plastic display chassis may be used to support display layers and backlight components. A light blocking material such as a layer of metal or opaque coating material may be formed on a surface of the plastic display chassis and may be used to reduce light leakage from the backlight components to the exterior of the electronic device. A metal barrier structure may be formed on a surface of the support structure and may be used to ground a conductive display layer to a conductive support structure such as a metal display chassis or a metal housing member. The plastic display chassis may be insert molded around a light barrier structure.
Abstract:
The disclosed embodiments provide a battery cell. The battery cell includes a set of layers including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a pouch enclosing the layers. Finally, the battery cell has a three-dimensional non-rectangular shape to facilitate efficient use of space within a portable electronic device powered by the battery cell.
Abstract:
Electronic devices may include displays. A display may include backlight components such as a light guide plate that distributes light from a light source across the display. The light source may include a plurality of light-emitting diodes mounted on a printed circuit substrate. A portion of the light guide plate may be attached to the printed circuit substrate using adhesive. The adhesive may be a supported adhesive that includes a lining of reflective material. A reflective coating such as a layer of white coverlay may be formed on the surface of the printed circuit substrate and may be configured to reflect light into the light guide plate. The reflective coating may serve as a solder mask. The printed circuit substrate may be attached to a metal display chassis using adhesive. A shim may be used to raise the height of the light source relative to the printed circuit substrate.
Abstract:
Electronic devices may include displays having backlight structures and display layers. The display layers may include alignment features. The backlight structure may include alignment features. The alignment features on the backlight structures may include transparent portions of the backlight structures. The alignment features on the display layers may include alignment marks that are visible through the transparent portions of the backlight structures. The transparent portions of the backlight structures may include openings that extend from a first surface of the backlight structures to an opposing second surface of the backlight structures. The openings may be filled by transparent members formed from plastic or glass. The transparent members may include additional alignment marks. The transparent members may include lensing portions that magnify the alignment marks on the display layers when viewed through the lensing portions.
Abstract:
Brackets may be mated with or coupled to an opening of an electronic device enclosure or housing for receiving plug connectors to reinforce the receptacle connector and/or device housing and potentially reduce damage/breakage. For example, a bracket can have a front face with a curvature. A back face of the bracket can include a first opening that communicates with a cavity. The cavity can be defined at least in part by upper and lower opposing inner surfaces, the lower inner surface including a portion that extends parallel to a portion of the bracket front face. The bracket can also include a hollow protrusion extending from the bracket front face in a front direction. The hollow protrusion can include an opening that communicates with the opening of the back face and extends through the hollow protrusion. Methods for manufacturing the connector bracket are also provided.
Abstract:
A wearable electronic device, including a display, and a support arm connected to the display, the support arm including a static portion connected to the display, a dynamic portion connected to the static portion, and an adjustment mechanism positioned in the dynamic portion and configured to change a thickness of the dynamic portion.