摘要:
A signal representing physiological information may include information related to respiration. A patient monitoring system may utilize a wavelet transform to generate a scalogram from the signal. A threshold for the scalogram may be calculated, and scalogram values may be compared to the threshold. One of the scales meeting the threshold may be selected as representing respiration information such as respiration rate. The respiration information may be determined based on the selected scale.
摘要:
The present disclosure relates generally to patient monitoring systems and, more particularly, to signal analysis for patient monitoring systems. In one embodiment, a method of analyzing a detector signal of a physiological patient sensor includes obtaining the detector signal from the physiological patient sensor, and determining a ratio of the signal between two or more channels. A distribution of the angles between the points of the ratio over time may be used to determine a true ratio or a ratio of ratios for use in the determination of a physiological parameter.
摘要:
A signal representing physiological information may include information related to respiration. A patient monitoring system may generate a plurality of autocorrelation sequences from the signal and combine the autocorrelation sequences to generate a combined autocorrelation sequence. The combined autocorrelation sequence may be analyzed to identify one or more peaks that may correspond to respiration information. Respiration information such as respiration rate may be determined based on the one or more peaks.
摘要:
A patient monitoring system may receive a photoplethysmograph (PPG) signal including samples of a pulse waveform. A plurality of morphology metric signals may be generated from the PPG signal. The system may generate an autocorrelation sequence for each of the morphology metric signals. An autocorrelation metric may be generated from each of the autocorrelation sequences and may represent the regularity or periodicity of the morphology metric signal. The autocorrelation sequences may be combined to generate a combined autocorrelation sequence, with the weighting of the autocorrelation sequences based on the autocorrelation metric. The combined autocorrelation sequence may be used to determine physiological information.
摘要:
Systems and methods are provided for determining the pulse rate of a patient from multiple fiducial points using Gaussian kernel smoothing. Based on acquired pleth signals, each recorded fiducial pulse period is converted to a Gaussian kernel function. The Gaussian kernel functions for all recorded fiducial points are summed to generate a Gaussian kernel smoothed curve. The pulse rate of a patient may be determined from the Gaussian kernel smoothed curve. All acquired fiducial pulse periods contribute to generate the Gaussian kernel smoothing curve. The number of fiducial points utilized may change to improve pulse rate determination or provide additional functionality to the system.
摘要:
A patient monitoring system may receive a physiological signal such as a photoplethysmograph (PPG) signal. A plurality of respiration morphology signals may be determined from the PPG signal. Principal component analysis may be performed on the respiration morphology signals, resulting in one or more principal components. Respiration information such as respiration rate may be determined at least in part from a principal component that corresponds to a respiration source signal.
摘要:
The present invention is a multi-wavelength diagnostic imager. In one embodiment, the present invention includes an apparatus and method for noninvasive evaluation of a target versus a non-target, comprising: one or more light sources having at least one emission spectra directed at the target wherein the position, orientation and intensity of light sources is varied to control near-surface reflectance and are directed at less than the entire target; and one or more detectors positioned to capture light reflected from the target into two or more spatial images of the target at two or more times, wherein the spatial images are used to distinguish between the target and the non-target.
摘要:
According to embodiments, a method and system for artifact detection in signals is disclosed. The artifacts may take the form of movement artifacts in physiological (e.g., pulse oximetry) signals. Artifacts in the wavelet space of the physiological signal may be removed, replaced, ignored, filtered, or otherwise modified by determining the energy within a predefined moving area of the wavelet scalogram, comparing the determined energy within the predefined moving area of the wavelet scalogram to a threshold value, and masking at least one area of artifact in the wavelet scalogram based, at least in part, on the comparison. From the enhanced signal, physiological parameters, for example, respiration, respiratory effort, pulse, and oxygen saturation, may be more reliably and accurately derived or computed.
摘要:
One or more physiological conditions of a patient can be observed by obtaining a photoplethysmograph (“PPG”) signal from the patient and by only lightly filtering that signal. The light filtering of the PPG may be such as to only remove (for example) high frequency noise from that signal, while leaving in the signal most or all frequency components that are due to physiological events in the patient. In this way, such physiological events can be observed via a visual display of the lightly filtered PPG signal and/or via other signal processing of the lightly filtered PPG signal to automatically extract certain physiological parameters or characteristics from that signal.
摘要:
The present invention includes an integrated system and methods for patient treatment, the system includes a hospital bed; a plurality of patient diagnostic and treatment devices connected to a network, wherein each of the devices can communicate to a network and exchange information with the network about the care of a patient; and a processor accessible adjacent to the bed and connected to the network to integrate information obtained from the devices through the network with one or more additional sources of information databases, wherein the processor can communicate to one or more patient treatment devices either directly or via the network and the processor directs the one or more patient treatment devices to change the treatment of the patient.