摘要:
A Mask ROM and a method of manufacture of a Mask ROM on a semiconductor substrate comprises formation of a first plurality of conductor lines in a first array. A dielectric layer is formed upon the device with a matrix of openings therein in line with the first array. The openings expose the surface of the first conductor lines. Semiconductor diodes are formed in the matrix of openings in contact with the first conductor lines. A second plurality of conductor lines are formed on the surface of the dielectric layer in a second array of conductor lines orthogonal to the first plurality of conductor lines in the first array. A second plurality of conductor lines is aligned with the matrix and is in contact with the upper ends of the semiconductor diodes.
摘要:
An integrated circuit EPROM memory device includes devices to which electrical connections are to be made. A tunnel oxide layer on a semiconductor substrate carries an array of gate stacks with sidewalls with trench spaces therebetween comprising wider drain trench spaces and narrower source trench spaces down to the tunnel oxide layer. Gate stacks include a doped polysilicon floating gate over the tunnel oxide layer, a dielectric layer over the floating gate, a polysilicon control gate over the dielectric layer covered by a silicon dioxide dielectric layer and a silicon nitride layer. Source/drain regions lie between the stacks with alternating source regions and drain regions below the trench spaces between the sidewalls. Spacers are adjacent to the sidewalls of the drain trench spaces. Spacer dielectric plugs fill source trench spaces. A blanket dielectric layer overlies the stacks and the spacer dielectric plugs. Bitlines extend across the stacks into contact with the drain regions through the drain trench spaces. The memory devices include a self-aligned bitline structure formed simultaneously with electrical contacts to the drains.
摘要:
A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a metal oxide device. The metal oxide device includes first and second doped regions disposed within the substrate and interfacing in a channel region. The first and second doped regions are doped with a first type dopant. The first doped region has a different concentration of dopant than the second doped region. The metal oxide device further includes a gate structure traversing the channel region and the interface of the first and second doped regions and separating source and drain regions. The source region is formed within the first doped region and the drain region is formed within the second doped region. The source and drain regions are doped with a second type dopant. The second type dopant is opposite of the first type dopant.
摘要:
A semiconductor memory device includes a substrate, and a trench formed in the substrate. First and second floating gates, each associated with corresponding first and second memory cells, extend into the trench. Since the trench can be made relatively deep, the floating gates may be made relatively large while the lateral dimensions of the floating gates remains small. Moreover, the insulator thickness between the floating gate and a sidewall of the trench where a channel region is formed can be made relatively thick, even though the lateral extent of the memory cell is reduced. A programming gate extends into the trench between the first and second floating gates, and is shared, along with a source region, by the two memory cells.
摘要:
A new method to form a floating gate isolation test structure in the manufacture of a memory device is achieved. The method comprises providing a substrate. A gate oxide layer is formed overlying the substrate. A floating gate conductor layer is deposited overlying the gate oxide layer. The floating gate conductor layer is patterned to expose the substrate for planned source regions. Ions are implanted into the exposed substrate to form the source regions. Contacting structures are formed to the source regions. Contacting structures are formed to the floating gate conductor layer.
摘要:
An embedded flash cell structure comprising a structure, a first floating gate having an exposed side wall over the structure, a second floating gate having an exposed side wall over the structure and spaced apart from the first floating gate, a first pair of spacers over the respective first floating gate and the second floating gate, a second pair of spacers at least over the respective exposed side walls of the first and second floating gates, a source area in the structure between the second pair of spacers, a plug over the source implant, and first and second control gates outboard of the first pair of spacers and exposing outboard portions of the structure and respective drain areas in the exposed outboard portions of the structure is provided. A method of forming the embedded flash cell structure is also provided.
摘要:
A programmable non-volatile memory (PNVM) device and method of forming the same compatible with CMOS logic device processes to improve a process flow, the PNVM device including a semiconductor substrate active area; a gate dielectric on the active area; a floating gate electrode on the gate dielectric; an inter-gate dielectric disposed over the floating gate electrode; and, a control gate damascene electrode extending through a dielectric insulating layer in electrical communication with the inter-gate dielectric, the control gate damascene electrode disposed over an upper portion of the floating gate electrode.
摘要:
Methods for determining writing current for memory cells. A first reference current is applied to a first operative line to switch the memory cell to a first state. A second reference current is applied to a second operative line crossing the first operative line to switch the memory cell to a second state. A first writing current is obtained according to a first ratio and the first reference current. A second writing current is obtained according to a second ratio and the second reference current. The memory cell is programmed by applying the first writing current to the first operative line and applying the second writing current to the second operative line.
摘要:
A new method to form a split gate for a flash device in the manufacture of an integrated circuit device is achieved. The method comprises providing a substrate. A film is deposited overlying the substrate. The film comprises a second dielectric layer overlying a first dielectric layer with an electronic-trapping layer therebetween. A masking layer is deposited overlying the film. The masking layer and the film are patterned to expose a part of the substrate and to form a floating gate electrode comprising the electronic-trapping layer. An oxide layer is grown overlying the exposed part of the substrate. The masking layer is removed. A conductive layer is deposited overlying the oxide layer and the second dielectric layer. The conductive layer and the oxide layer are patterned to complete a control gate electrode comprising the conductive layer. The control gate electrode has a first part overlying the floating gate electrode and a second part not overlying the floating gate electrode.
摘要:
An embedded flash cell structure comprising a structure, a first floating gate having an exposed side wall over the structure, a second floating gate having an exposed side wall over the structure and spaced apart from the first floating gate, a first pair of spacers over the respective first floating gate and the second floating gate, a second pair of spacers at least over the respective exposed side walls of the first and second floating gates, a source area in the structure between the second pair of spacers, a plug over the source implant, and first and second control gates outboard of the first pair of spacers and exposing outboard portions of the structure and respective drain areas in the exposed outboard portions of the structure is provided. A method of forming the embedded flash cell structure is also provided.