Abstract:
A solid state (light emitting diode) lamp in numerous configurations have improved thermal management by providing a direct thermal pathway from the plurality of LED chips to the threaded screw base (standard 100˜240 VAC lamp socket), or power coupling. The control circuitry is disposed opposite the printed circuit board and LED chips with respect to the heat sink so that the heat sink is interposed between the printed circuit board and the control circuitry. The LED chips are powered using a high voltage/high current configuration. The light radiation pattern is infinitely adjustable (very wide through very narrow) via a system of easily interchangeable lenses. The solid state lamps can be mass produced rapidly at significantly lower cost with very high luminous intensity. ESD protection may be included to protect the LED chips from electrostatic discharge damage.
Abstract:
Various systems and methods for performing trapping in relation to one or more variable color objects are disclosed. As one example, a method is disclosed that includes identifying two or more objects with each of the objects being associated with a respective color. At least one of the associated colors is a variable color. The other color may be either variable or constant. A trap zone is defined in relation to the identified objects, and a transfer function is formed that defines a trap attribute for at least a portion of the trap zone. The trap attribute may be, but is not limited to, a trap direction and and/or ink in the trap zone. Such a trap direction may be, but is not limited to, a choke and a spread. Other examples are also disclosed.
Abstract:
A trapping process that evaluates values relating to the luminance of the colors as well as the ink components of each of the colors. The trapping process is then able to determine the direction of the trapping of each the objects on an ink by ink basis. The trapping process of a preferred embodiment evaluates not only the luminance of the color of each of the objects but also the luminance of each of the ink components of the colors of each of the objects. This allows the trapping process to determine the trapping direction of the objects on an ink by ink basis.
Abstract:
An LED light string employs a plurality of electrical components defined by LEDs and sockets wired in block series-parallel, where the one or more series blocks, each driven at the same input voltage as the source voltage (110 VAC or 220 VAC), are coupled in parallel. The LED light string interfaces to the source voltage using a common household plug; it may also include a corresponding common, household socket, coupled in electrical parallel, to enable multiple light strings to be connected to each other from end to end. In order to directly drive a network of diodes without current-limiting circuitry, the voltage of each series block of diodes must be matched to the input source voltage. This voltage matching requirement for direct AC drive places fundamental restrictions on the number of diodes on each diode series block, depending on the types of diodes used. For the voltage to be “matched,” it is possible to employ LED assemblies of different resistance values; e.g., the LED assemblies may emit different colors or be formed with a dedicated resistor (e.g., drop down resistor) integrally formed as part of at least one of the LED assemblies.
Abstract:
A system and method for directing water, nutrients and air to the root system of a plant includes an elongated, hollow housing having a wall member that permits water and air to be transmitted therethrough and which defines an internal cavity with an open top and an open bottom, and an elbow coupled to the housing proximate the open top.
Abstract:
A continuously variable planetary gear set is described having a generally tubular idler, a plurality of balls distributed radially about the idler, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls, a rotatable output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls such that each of the balls makes three-point contact with the input disc, the output disc and the idler, and a rotatable cage adapted to maintain the axial and radial position of each of the balls, wherein the axes of the balls are oriented by the axial position of the idler.
Abstract:
A continuously variable planetary gear set is described having a generally tubular idler, a plurality of balls distributed radially about the idler, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls, a rotatable output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls such that each of the balls makes three-point contact with the input disc, the output disc and the idler, and a rotatable cage adapted to maintain the axial and radial position of each of the balls, wherein the axes of the balls are oriented by the axial position of the idler.
Abstract:
A variable speed transmission having a plurality of tilting balls and opposing input and output discs is illustrated and described that provides an infinite number of speed combinations over its transmission ratio range. The use of a planetary gear set allows minimum speeds to be in reverse and the unique geometry of the transmission allows all of the power paths to be coaxial, thereby reducing overall size and complexity of the transmission in comparison to transmissions achieving similar transmission ratio ranges.
Abstract:
A continuously variable transmission is disclosed for use in rotationally or linearly powered machines and vehicles. The transmission provides a simple manual shifting method for the user. Further, the practical commercialization of traction roller transmissions requires improvements in the reliability, ease of shifting, function and simplicity of the transmission. The present invention includes a continuously variable transmission that may be employed in connection with any type of machine that is in need of a transmission. For example, the transmission may be used in (i) a motorized vehicle such as an automobile, motorcycle, or watercraft, (ii) a non-motorized vehicle such as a bicycle, tricycle, scooter, exercise equipment or (iii) industrial equipment, such as a drill press, power generating equipment, or textile mill.
Abstract:
A variable speed transmission having a plurality of tilting balls and opposing input and output discs is illustrated and described that provides an infinite number of speed combinations over its transmission ratio range. The use of a planetary gear set allows minimum speeds to be in reverse and the unique geometry of the transmission allows all of the power paths to be coaxial, thereby reducing overall size and complexity of the transmission in comparison to transmissions achieving similar transmission ratio ranges.