Abstract:
A resonant tank comprises a series resonant inductor coupled to a switching network and a transformer, a series resonant capacitor coupled to the switching network and the transformer, a first parallel inductor implemented as a magnetizing inductance of the transformer, a second parallel inductor implement as a separate inductor, wherein a first inductance of the first parallel inductor is greater than a second inductance of the second parallel inductor and a switch connected in series with the second parallel inductor.
Abstract:
A converter comprises a bridge and a resonant tank coupled between the bridge and an isolation transformer. The converter is configured such that the converter operates at a first constant-gain resonant frequency during a normal operation condition wherein a voltage gain of the converter is essentially insensitive to an output load change and the converter operates at a minimum-gain damping frequency during an abnormal operation condition wherein a voltage gain of the converter is approximately equal to zero.
Abstract:
An embodiment power converter package comprises a semiconductor die, an output inductor, a plurality of input capacitors and output capacitors. The semiconductor die, the output inductor and the plurality of capacitors are mounted on a lead frame and connected one to another through various pads on the lead frame. The semiconductor die comprises a high side switch, a low side switch and a driver. The power converter package is electrically coupled to an external pulse width modulation controller through a variety of input and output pads.
Abstract:
A power system comprising a non-isolated voltage regulator configured to couple to an input voltage and produce an output voltage, wherein the non-isolated voltage regulator is in a power distribution system and configured to boost the input voltage when the input voltage is less than a minimum output voltage, to reduce the input voltage when the input voltage is greater than a maximum output voltage, and to pass-through the input voltage when the input voltage is greater than or equal to the minimum output voltage and less than or equal to the maximum output voltage.
Abstract:
A regulated partial power controlled converter is presented, with the partial power controlled converter containing a DC/DC converter receiving an input signal. The regulated partial power converter providing a first converted signal from a first terminal, and providing a second converted signal from a second terminal. The regulated partial power converter also contains a first capacitor connected between an output node and an intermediate node, a second capacitor connected between the intermediate node and a ground, and a charge balance circuit connected to the output node, the intermediate node, and the ground. An output power of the partial power controlled converter is based on a first partial power provided by the DC/DC converter and a second partial power provided by a charge balance circuit.
Abstract:
In certain embodiments, an apparatus includes an inductor having first and second terminals. The first terminal is configured to be coupled to a power source. The apparatus includes a pair of serially-coupled transistors coupled to the second terminal of the inductor. A transistor intermediate node is positioned between the pair of serially-coupled transistors. The apparatus includes a pair of serially-coupled diodes coupled to the second terminal of the inductor. A diode intermediate node is positioned between the pair of serially-coupled diodes. The apparatus includes a first capacitor coupled in parallel with the serially-coupled transistors and the serially-coupled diodes. The apparatus includes a sub-circuit having a second capacitor serially-coupled with an auxiliary transistor. The sub-circuit is coupled between the transistor intermediate node and the diode intermediate node and is in parallel with a transistor of the pair of serially coupled transistors and with a diode of the pair of serially-coupled diodes.
Abstract:
The disclosure relates to technology for providing power, voltage, and/or current from a combination of photovoltaic modules. In one aspect, a system has central power optimizer, which is located between a group of distributed power optimizers and a solar inverter. Each distributed power optimizer may be connected to the DC output of one photovoltaic modules, and may be used to regulate the power output of the photovoltaic module. The combined DC voltages of the distributed power optimizers may be provided to the input of the central power optimizer.
Abstract:
A DC to DC converter uses a multi-level boost converter topology. In addition to the input voltage being connected to an output node through a boost inductor in series with a pair of diodes, a bridge circuit generates a multi-level waveform on one side of flying capacitor, which is on the other side connected between the series connected diodes. The boost converter topology maintains low voltage stress on its components under abnormal conditions on the output node and allows for simple pre-charging of the flying capacitor.
Abstract:
A device includes a first diode and a second diode connected in series between a first terminal and a second terminal of a switching element, wherein the switching element is a unidirectional device and an anode of the first diode is directly connected to an anode of the second diode, a third diode connected between the first terminal and the second terminal of the switching element and a switch connected in parallel with the first diode.
Abstract:
System, device and method for exporting power are provided including at least one AC optimizer with plurality of DC inputs each connecting with respective one of plurality of DC sources, and independent maximum power point tracking (MPPT) performed for each respective DC source to extract power from each DC source for output and coupling to AC grid. When multiple AC optimizers are employed, with each AC optimizer having multiple DC inputs, each DC input can be connected to PV module with independent MPPT function. Since, each AC optimizer can serve multiple PV modules, significant cost saving and efficiencies can be achieved. Optionally, on PV sub-module level, each of the multiple DC inputs can be used as an independent MPPT channel for a PV sub-module cell string.