Abstract:
A mixer is disclosed that includes first and second transconductance modules that, in one embodiment, includes MOSFETs configured to receive a plurality of signals that are to be mixed and a selectively coupled auxiliary current source to inject an auxiliary current into the second transconductance module approximately at or near a zero-crossing point in order to reduce flicker noise and other noise introduced into an output signal during switching. Accordingly, as a first transconductance module approaches a zero-crossing, auxiliary current is injected to reduce the current produced therefrom thereby reducing flicker noise. In a differential mixer, the amount of current produced from a transistor pair to which the signal cycle is being switched is also reduced thereby reducing noise from the transistor pair that is turning on for the next portion of a signal cycle.
Abstract:
A digital to analog conversion (DAC) module includes a digital to analog converter, a sample and hold circuit, and a switch module. The digital to analog converter is coupled to convert a digital signal into an analog signal. The sample and hold circuit is coupled to sample the analog signal to produce a sampled analog signal. The switch module is coupled to provide the analog signal as an output of the DAC module when the DAC module in a first mode and to output the analog signal to the sample and hold circuit when the DAC module in a second mode, wherein the sampled analog signal provides the output of the DAC module in the second mode.
Abstract:
Local oscillation circuitry for use in an RF transceiver Integrated Circuit (IC) includes local oscillation generation circuitry operable to produce a local oscillation and local oscillation distribution circuitry. The local oscillation distribution circuitry includes a splitting circuit, a first distribution portion, and a second distribution portion. The splitting circuit receives the local oscillation and produces multiple copies of the local oscillation. The first distribution portion produces a first local oscillation corresponding to a first RF band and a second local oscillation corresponding to a second RF band based and to provide the first local oscillation and the second local oscillation to a first RF transceiver group. The second distribution portion produces a first local oscillation and a second local oscillation and provides the first local oscillation and the second local oscillation to the second RF transceiver group.
Abstract:
Various embodiments are disclosed relating to wireless systems, and relating to wireless transceivers. In an example embodiment, the wireless transceiver may include a voltage controlled oscillator (VCO) that may be controlled by a phase-locked loop (PLL). A fractional-N divider may be coupled to a feedback loop of the PLL and a delta-sigma modulator may control the fractional-N divider to vary the divider number of the fractional-N divider to cause the VCO to output a modulated frequency spectrum. In another embodiment, modulation path calibration may be performed by inputting an amplitude and phase modulated transmit spectrum to the transceiver's receiver to be demodulated. The demodulated transmit spectrum may then be analyzed to determine if the transmit spectrum meets one or more signal requirements, such as falling within a required spectral mask. The AM path delay and/or the PM path delay of the transmitter may be adjusted to decrease a mismatch in timing or delay between the AM and PM paths.
Abstract:
Configuring a multiple stage band pass filter of a radio frequency receiver commences by setting a comer of a low pass mixer output filter that receives a down sampled analog information signal. Operation continues with setting a buffer output filter comer of a low pass buffer output filter coupled to an output of low pass mixer output filter via a buffer. Then, operation includes setting the poles and zero of a plurality of band pass filters coupled to the output of the low pass buffer output filter is performed. This operation includes first setting a zero of a respected band pass filter and then setting the plurality of poles of the band pass filter. Finally, operation concludes with setting a combined gain of the combination of the low pass mixer output filter, the low pass buffer output filter, and the plurality of band pass filters.
Abstract:
Methods and systems for processing signals are disclosed herein. In one aspect of the invention a circuit for processing signals may comprise a triple well (TW) NMOS transistor coupled to an amplifier core. The TW NMOS transistor may track process and temperature variations (PVT) of at least one NMOS transistor within the amplifier core. A drain of the TW NMOS transistor may be coupled to a first inductor and the first inductor may be coupled to a first voltage source. The first voltage source may generate a standard voltage of about 1.2V. A source of the TW NMOS transistor may be coupled to a second inductor and the second inductor may be coupled to the first voltage source. A gate of the TW NMOS transistor may be coupled to a second voltage source, where the second voltage source may generate a standard voltage of about 2.5V.
Abstract:
A circuit is formed to steer current in and out of an inductive load in a manner that enables an amplifier to provide a plurality of gain steps without modifying an LC time constant for the circuit and, therefore, without modifying the tuning or frequency of oscillation for the circuit. A first group of MOSFETs are coupled in parallel and define the circuit current flow. A second group of MOSFETs are coupled in parallel to each other and in series to an impedance device. A third group of MOSFETs coupled to steer current in and out of the impedance device to affect the output signal coupled to one end of the impedance device. The transistors in the second and third groups of MOSFETs are selectively activated to control the amount of current that goes through the impedance device.
Abstract:
In RF transceivers, a method and system for a second order input intercept point (IIP2) calibration scheme are provided. Transceiver calibration schemes to compensate for DC offsets produced by interfering signals may be performed during production testing or field operation. During production testing, an external source may inject a blocker signal that produces DC offsets in the receiver portion of the transceiver. A transceiver switch may be set to receive mode in this scheme. During field operation, a power amplifier in the transmitter portion of the transceiver may inject the blocker signal. In this scheme, the switch may be set to transmit mode and the DC offsets are produced by the portion of the injected blocker signal that leaks through the switch. In both schemes, a DC offset sensor detects DC offsets in the I/Q signal paths and may determine compensation currents which may be applied by injection circuits.
Abstract:
A dual-band input transceiver block is formed to operably receive one of a 2.4 GHz radio frequency signal or a 5.0 GHz radio frequency transceiver signal in a manner that minimizes duplication of circuitry and creates a combined circuit path for RF front end input stages for much of the input stage. More specifically, the embodiments of the present invention include separate amplification and mixing stages whose outputs are combined by a stabilized load with circuitry for removing a common mode feedback signal. As such, downstream components, such as amplifiers, filters, analog-to-digital converters, and other input path circuit elements, are not duplicated and may be used regardless of whether the dual-band transceiver is operating in a first or second frequency band. Operation is, in the described embodiment, only one frequency input at a time though the invention is not limited to such operation. More specifically, a first input section is operably coupled to receive a first local oscillation input and a first frequency band signal input. A second input section is coupled to receive a second local oscillation input and a second frequency band signal input. Outputs of the first and second input sections are produced to a stabilized load with a common mode feedback block for removing a common mode feedback signal. As such, an output signal is produced having a regulated DC level and having any common mode feedback signal eliminated there from.
Abstract:
A bias filtering module with at least two capacitive levels satisfies both a settle time requirement and a filtering requirement using a voltage dependent filter module whose capacitance is a function of a voltage potential on the filtering circuitry output terminal. The final capacitance level is approximately three times larger than the initial capacitance level. MOS capacitors having a voltage dependent charge capacity within the bias filtering module are coupled between a plurality of bias lines and circuit common. In an alternate embodiment, a selectable first group of capacitors are switched into connection within the bias filtering module as a second group of capacitors approximately reach a fully charged state within a specified settle time to provide improved filtering.