摘要:
Described herein are implantable systems and devices, and methods for use therewith, that can be used to perform arrhythmia discrimination. A plurality of different sensing vectors are used to obtain a plurality of different IEGMs, each of which is indicative of cardiac electrical activity at a different ventricular region. The plurality of different IEGMs can include, e.g., an IEGM indicative of cardiac electrical activity at a first region of the patient's left ventricular (LV) chamber and an IEGM indicative of cardiac electrical activity at a second region of the patient's LV chamber. Additionally, the plurality of different IEGMs can further include an IEGM indicative of cardiac electrical activity at a region of a patient's right ventricular (RV) chamber. For each of the IEGMs, there is a determination of a corresponding localized R-R interval stability metric indicative of the R-R interval stability at the corresponding ventricular region. This can include, e.g., determining, for each of the IEGMs, a plurality of R-R intervals corresponding to a plurality of consecutive cardiac cycles of the IEGM. For each IEGM, a measure of variation (e.g., standard deviation, range or variance, but not limited thereto) can then be determined for the plurality of R-R intervals to thereby determine the localized R-R interval stability metric for the IEGM. Arrhythmia discrimination is then performed using the plurality of determined localized R-R interval stability metrics.
摘要:
Techniques are provided for use with implantable cardiac stimulation devices equipped for multi-site left ventricular (MSLV) cardiac pacing. Briefly, intraventricular and interventricular conduction delays are detected for paced cardiac events. Maximum pacing time delays are determined for use with MSLV pacing where the maximum pacing time delays are set based on the conduction delays to values sufficient to avoid capture problems due to wavefront propagation, such as fusion or lack of capture. MSLV pacing delays are then set to values no greater than the maximum pacing delays and cardiac resynchronization therapy (CRT) is delivered using the MSLV pacing delays. In an example where an optimal interventricular pacing delay (VV) is determined in advance using intracardiac electrogram-based or hemodynamic-based optimization techniques, the optimal value for VV can be used as a limiting factor when determining the maximum MSLV pacing time delays.
摘要:
A system and method for treating an arrhythmia in a heart are provided. The system includes an electronic control unit configured to monitor movement of one or more position sensor over a period of time. The position sensors may, for example, comprise electrodes or coils configured to generate induced voltages and currents in the presence of electromagnetic fields. The positions sensors are in contact with portions of heart tissue and changes in position are representative of motion of that tissue. The electronic control unit is further configured to generate an indicator, responsive to the movements of the sensors over the period of time, of a characteristic of the heart affected by delivery of ablation energy to heart tissue. In this manner, the effectiveness and safety of cardiac tissue ablation for treatment of the arrhythmia can be assessed and a post-ablation therapy regimen determined.
摘要:
An exemplary method includes providing a mechanical activation time (MA time) for a myocardial location, the location defined at least in part by an electrode and the mechanical activation time determined at least in part by movement of the electrode; providing an electrical activation time (EA time) for the myocardial location; and determining an electromechanical delay (EMD) for the myocardial location based on the difference between the mechanical activation time (MA time) and the electrical activation time (EA time).
摘要:
Techniques are provided for use with an implantable cardiac stimulation device equipped for multi-site left ventricular (MSLV) pacing using a multi-pole LV lead. In one example, referred to herein as QuickStim, cardiac pacing configurations are optimized based on an assessment of hemodynamic benefit and device longevity. In another example, referred to herein as QuickSense, cardiac sensing configurations are optimized based on sensing profiles input by a clinician. Various virtual sensing channels are also described that provide for the multiplexing or gating of sensed signals. Anisotropic oversampling is also described.
摘要:
An exemplary method includes positioning a lead in a patient where the lead has a longitudinal axis that extends from a proximal end to a distal end and where the lead includes an electrode with an electrical center offset from the longitudinal axis of the lead body; measuring electrical potential in a three-dimensional potential field using the electrode; and based on the measuring and the offset of the electrical center, determining lead roll about the longitudinal axis of the lead body where lead roll may be used for correction of field heterogeneity, placement or navigation of the lead or physiological monitoring (e.g., cardiac function, respiration, etc.). Various other methods, devices, systems, etc., are also disclosed.
摘要:
A method includes selecting an electrode located in a patient wherein the electrode comprises a lead-based electrode; acquiring position information with respect to time for the electrode, during both loaded and unloaded conditions of the lead, where the acquiring uses the electrode for repeatedly measuring electrical potentials in an electrical localization field established in the patient; calculating a both loaded and unloaded stability metrics for the electrode based on the acquired position information with respect to time; and comparing the unloaded and loaded stability metrics to decide whether the electrode, as located in the patient, comprises a stable location for delivery of therapy.
摘要:
A method includes selecting an electrode located in a patient; acquiring position information with respect to time for the electrode where the acquiring uses the electrode for repeatedly measuring electrical potentials in an electrical localization field established in the patient; calculating a stability metric for the electrode based on the acquired position information with respect to time; and deciding if the selected electrode, as located in the patient, has a stable location for sensing biological electrical activity, for delivering electrical energy or for sensing biological electrical activity and delivering electrical energy. Position information may be acquired during one or both of intrinsic or paced activation of a heart and respective stability indexes calculated for each activation type.
摘要:
An exemplary method generates a map of a pacing parameter, a sensing parameter or one or more other parameters based in part on location information acquired using a localization system configured to locate electrodes in vivo (i.e., within a patient's body). Various examples map capture thresholds, qualification criteria for algorithms, undesirable conditions and sensing capabilities. Various other methods, devices, systems, etc., are also disclosed.
摘要:
An exemplary method includes accessing cardiac information acquired via a catheter located at various positions in a venous network of a heart of a patient where the cardiac information comprises position information, electrical information and mechanical information; mapping local electrical activation times to anatomic positions to generate an electrical activation time map; mapping local mechanical activation times to anatomic positions to generate a mechanical activation time map; generating an electromechanical delay map by subtracting local electrical activation times from corresponding local mechanical activation times; and rendering at least the electromechanical delay map to a display. Various other methods, devices, systems, etc., are also disclosed.