Abstract:
The present invention provides an electrode for a secondary battery, more specifically an electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on at least one surface or the whole outer surface of the current collector; a conductive material-coating layer formed on the top surface of the electrode active material layer and comprising a conductive material and a first polymer binder; and a porous coating layer formed on the top surface of the conductive material-coating layer and comprising a second polymer binder. Also, the present invention provides a secondary battery and a cable-type secondary battery comprising the electrode
Abstract:
Described herein is a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: a core for supplying lithium ions, which comprises an electrolyte; an inner electrode surrounding the outer surface of the core for supplying lithium ions, and comprising an inner current collector in the form of a pipe having a three-dimensional network structure, the inner current collector being coated with an inner electrode active material on the outer surface thereof; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer and comprising an outer electrode active material layer and an outer current collector.
Abstract:
The present invention relates to a cable-type secondary battery comprising a polymer electrolyte having a first electrolyte layer comprising a mixture of a first polymer and a first organic electrolyte solution in a weight ratio of 50:50 and 80:20; and a second electrolyte layer formed on at least one surface of the first electrolyte layer and comprising a mixture of a second polymer and a second organic electrolyte solution in a weight ratio of 20:80 and 50:50. Since the multiple-layered polymer electrode film of the present invention exhibits good characteristics in terms of both mechanical property and ionic conductivity, the cable-type secondary battery comprising the same according to the present invention has superior battery performances and flexibility, as well as good strength for withstanding external impact.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: a core for supplying lithium ions; an inner electrode, comprising a spiral electrode formed by spirally twisting two or more wire-type inner current collectors coated with an inner electrode active material on the surface thereof; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer, and comprising an outer electrode active material layer and an outer current collector.The core for supplying lithium ions is disposed in the inner electrode, from which the electrolyte of the core for supplying lithium ions can be easily penetrated into an electrode active material, thereby facilitating the supply and exchange of lithium ions.
Abstract:
The present invention relates to an anode for a secondary battery, comprising: a spiral anode having at least two anode wires which are parallel to each other and spirally twisted, each of the anode wires having an anode active material layer coated on the surface of a wire-type current collector; and a conductive layer formed to surround the spiral anode.The anode active material layer of the spirally-twisted has a thin thickness as compared with a single strand of an anode having the same anode active material. Therefore, Li ions can be easily diffused to enhance battery performance. Also, the anode of the present invention has a conductive layer on the surface thereof to prevent or alleviate the release of an anode active material which is caused by volume expansion during charging and discharging processes, and to solve the isolation of the anode active material.
Abstract:
The present invention relates to an anode active material for a lithium secondary battery, comprising a carbon material, and a coating layer formed on the surface of particles of the carbon material and having a plurality of Sn-based domains having an average diameter of 1 μm or less. The inventive anode active material having a Sn-based domains coating layer on the surface of a carbon material can surprisingly prevent stress due to volume expansion which generates by an alloy of Sn and lithium. Also, the inventive method for preparing an anode active material can easily control the thickness of the coating layer.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: an inner electrode having an inner current collector and an inner electrode active material layer surrounding the outer surface of the inner current collector; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer, and having an outer electrode active material layer, an open-structured outer current collector and a conductive paste layer.The outer electrode having a conductive paste layer and an open-structured outer current collector according to the present invention has good flexibility to improve the flexibility of a cable-type secondary battery having the same. Also, the conductive paste layer is made of a light material, and thus can contribute to the lightening of the cable-type secondary battery.
Abstract:
A cable-type secondary battery is provided. The cable-type secondary battery includes an electrode assembly and a covering capable of surrounding the electrode assembly. The electrode assembly includes a first polarity electrode, a second polarity electrode, and a separator or an electrolyte layer interposed between the two electrodes. Each of the electrodes has an elongated shape and a structure in which an electrode active material is applied to the surface of a current collector whose shape in cross section orthogonal to the lengthwise direction thereof is circular, elliptical or polygonal. The covering includes a thermally conductive cover member as an upper half part and a thermally insulating cover member as a lower half part. The upper half part and the lower half part are divided by a horizontal plane passing the center of the cross section orthogonal to the lengthwise direction of the cable-type secondary battery.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: an inner electrode comprising a wire-type inner current collector having a first metal tap formed to be extended in a predetermined length at one end thereof, and an inner electrode active material layer formed on the surface of the inner current collector; a separator layer formed on the outer surface of the inner electrode active material layer; and an outer electrode formed on the outer surface of the separator layer, and comprising an outer electrode active material layer and an outer current collector having a second metal tap formed to be extended in a predetermined length at one end thereof.
Abstract:
The present invention relates to a packaging for a cable-type secondary battery extending longitudinally, comprising: a hollow metal foil layer; a first polymer resin layer formed on one surface of the metal foil layer; and a second polymer resin layer formed on the other surface of the metal foil layer, and a cable-type secondary battery comprising the packaging.The packaging of the present invention comprises a metal foil layer to prevent the contamination of an electrolyte in the cable-type battery and prevent the deterioration of battery performances, and also maintain the mechanical strength of the cable-type battery.