Abstract:
One embodiment provides a method of testing humidity. The method includes measuring i) a first weight of a first device which encloses a plurality of interferometric modulators and ii) a second weight of a second device which encloses a plurality of interferometric modulators, wherein the first and second devices contain a different amount of water vapor. The method further includes comparing the weights of the first and second devices and determining a relative humidity value or a degree of the relative humidity inside one of the two devices based at least in part upon the weight comparison. In one embodiment, the relative humidity value or degree is determined considering at least one of the following parameters: i) temperature-humidity combination inside at least one of the devices, ii) the thickness and width of a seal of the at least one device, iii) adhesive permeability of a component of the at least one device, iv) a desiccant capacity inside the at least one device and v) a device size.
Abstract:
A system and method for an optical component that masks non-active portions of a display and provides an electrical path for one or more display circuits. In one embodiment an optical device includes a substrate, a plurality of optical elements on the substrate, each optical element having an optical characteristic which changes in response to a voltage applied to the optical element, and a light-absorbing, electrically-conductive optical mask disposed on the substrate and offset from the plurality of optical elements, the optical mask electrically coupled to one or more of the optical elements to provide electrical paths for applying voltages to the optical elements. In another embodiment, a method of providing an electrical signal to optical elements of a display comprises electrically coupling an electrically-conductive light-absorbing mask to one or more optical elements, and applying a voltage to the mask to activate the one or more optical elements.
Abstract:
A light modulator is arranged as an array of rows and columns of interferometric display elements. Each element is divided into sub-rows of sub-elements. Array connection lines transmit operating signals to the display elements, with one connection line corresponding to one row of display elements in the array. Sub-array connection lines electrically connect to each array connection line. Switches transmit the operating signals from each array connection line to the sub-rows to effect gray scale modulation.
Abstract:
Methods of writing display data to MEMS display elements are configured to minimize charge buildup and differential aging. Prior to writing rows of image data, a pre-write operation is performed. The pre-write operation with either actuate or release substantially all pixels in a row prior to writing the image data. In some embodiments, the selection between actuating or releasing is performed in a random or pseudo-random manner.
Abstract:
An interferometric modulator is provided having a faster deformation time constant on actuation than relaxation time constant upon release from actuation. In some embodiments, apertures are formed in a mechanical membrane to decrease pressure, including liquid and/or gas pressures, on the membrane when actuated. In other embodiments, a dampening layer is disposed in close proximity above the membrane to apply greater downward pressure on the membrane and therefore slow the motion of the membrane when released from an actuated state. Other embodiments comprise structures, such as a heating element or vacuum device, to manipulate pressures above and/or below the mechanical membrane to affect the mechanical persistence of the display device.
Abstract:
One embodiment provides a method of testing humidity, comprising: determining a property of a device which encloses a plurality of interferometric modulators; and determining a relative humidity value or a degree of the relative humidity inside the device based at least in part upon the determined property. In one embodiment, the property of the device includes one of the following: i) a weight of the device, ii) a color change of a desiccant enclosed in the device, iii) a resistance inside the device, iv) whether frost formed in an inside area of the device which is contacted by a cold finger device, v) whether a desiccant enclosed in the device, when water vapor is provided into the device, is working properly, and vi) combination of at lest two of i)-v).
Abstract:
A bit depth of a pixel comprising multiple display elements, such as interferometric modulators, may be increased through the use of display elements having different intensities, while the lead count is minimally increased. An exemplary pixel with at least one display element having an intensity of 0.5 and N display elements each having an intensity of one can provide about 2N+1 shades (e.g., 0, 0.5, 1.0, 1.5, 2.0, [N+0.5]). In comparison, a pixel having N display elements, each having an intensity of one, can only provide about N+1 shades (e.g., 0, 1, 2, . . . , N). Thus, using at least one display element having an intensity lower than the intensity of each of the other display elements increases the number of shades provided by the pixel by an approximate factor of two and increases the bit depth of the pixel, while minimizing the number of additional leads.
Abstract:
A light modulator is arranged as array of rows and columns of interferometric display elements. Each element is divided into sub-rows of sub-elements. Array connection lines transmit operating signals to the display elements, with one connection line corresponding to one row of display elements in the array. Sub-array connection lines electrically connect to each array connection line. Switches transmit the operating signals from each array connection line to the sub-rows to effect gray scale modulation.
Abstract:
A perforating gun assembly that includes at least one component that is constructed from a composite material and that is impermeable to wellbore fluids. The components may include the outer carrier and/or loading tube of a perforating gun, the connecting tubing of a gun release mechanism, and the gun connector used to attach adjacent perforating guns. The composite material is designed to be very brittle under dynamic impact. The component is made impermeable to wellbore fluids by including an impermeable liner therein. The impermeable liner can be bonded to the inner or outer surface of the component or can be embedded within the component. Since it is brittle under dynamic impact, the composite component shatters into small pieces upon detonation of the perforating gun.
Abstract:
A method and apparatus to protect explosive components used in various tools, such as tools for use in wellbores, includes a component with an adsorptive material. Example tools include perforating gun strings that include shaped charges, detonating cords, and booster explosives. Other tools may include surface tools containing explosive components. In these tools, a build up of corrosive gases or liquids may occur, which may cause damage to the explosive components. As a result, the structural integrity or reliability and thermal stability may be weakened or reduced. To reduce the amount of build up of corrosive gases or liquids, an adsorptive material is placed inside tools in the proximity of explosive components.