Abstract:
Method and arrangement in a network entity for supporting link adaptation in a wireless communication system. The method comprises obtaining 204 one or more predicted parameters related to the quality of a radio link. The method further comprises measuring 206 one or more actual parameters, corresponding to the one or more predicted parameters. The method further comprises deriving 208 one or more error distributions based on the difference between the predicted and actual one or more parameters, from which error distributions a link adaptation margin estimate is derived, based on a predetermined radio link quality target. The link adaptation margin estimate is then used for supporting link adaptation for the radio link.
Abstract:
A method of estimating path loss for a channel between a user equipment and a base station of a wireless communication system, the method performed at the base station and comprising the steps of: measuring (302) a signal power PSDrx for a received signal transmitted from the user equipment to the base station on the channel; and estimating (304) a path loss PL*, based on the measured signal power PSDrx and a path loss compensation value α associated with the base station. A base station and a computer readable medium is also described.
Abstract:
A method for providing co-channel interference information by a network node includes receiving information for at least one user equipment (UE) connected to an adjacent network node, determining a co-channel interference list for user equipment (UE) connected to the network node wherein the co-channel interference list is based on the received information and transmitting the co-channel interference list to a UE connected to the network node.
Abstract:
The object of the present invention is to perform an enhanced prediction technique. The object is achieved by a method in a base station comprised in a radio access network. The base station is adapted to communicate with at least one user equipment, the method comprises the steps of receiving a sequence of CQI values sampled at the times t=1, . . . , n, from one or more of the at least one user equipments; estimating for each of the received specific CQI value k, the conditional expectation of the CQI value at time t+d, given the specific CQI value k at time t; and obtaining a predicted CQI value for the specific CQI value k, which predicted CQI value is the estimated conditional expectation of the CQI values at a time t+d for the specific CQI value k.
Abstract:
According to some embodiments, there is provided a base station system configured to, among other things, (a) detect whether a particular UE is using too much power to transmit uplink data and (b) in response, transmit a message to the UE instructing the UE to detect a power control RS (PCRS) that is intended only for the particular UE. In some embodiments, the PCRS is transmitted such that the power (actual or nominal) of the PCRS as received by the UE is higher than the power of the previous CRS detected by the UE, thereby leading the UE to calculate a lower PL value, which can lead to the UE lowering its output power.
Abstract:
According to the present invention, a method in a base station is provided for predicting interference contribution, when scheduling an uplink data packet transmission from a first user equipment. The first user equipment is connected to the base station. The first user equipment is in the neighbor of a neighboring cell served by a neighboring base station. The method comprises the steps of: Obtaining signal strength measurements regarding the first user equipment. The signal strength measurements are based on a signal between the first user equipment and the neighboring base station; Receiving a resource scheduling request regarding the first user equipment for the uplink data packet transmission; Scheduling uplink resources for the requested uplink data packet transmission; Determining transmission power to be used for the scheduled uplink resources, and: Estimating an interference prediction contribution based on the determined transmission power and the obtained signal strength.
Abstract:
The object of the present invention is to reduce interference and power consumption of a repeater operated in a wireless communication network. According to the present invention this object is achieved by a self-optimizing repeater (10) for use in a wireless communication network using predetermined carrier communication resources per cell. The self-optimizing repeater (10) comprises an amplifier (12) adapted to amplify a first subset of communication resources selected from, the carrier communication resources, a monitoring unit (14) adapted to monitor traffic load on the first subset of communication resources, and an adjustment unit (16) adapted to adjust the first subset of communication resources as a function of the monitored traffic load. The operation of the self-optimizing repeater is fully transparent and no control signaling is necessary to control the self-optimizing repeater.
Abstract:
The present invention relates to methods and arrangements in a wireless communication system that enable the allocation of resources to UEs based on measurements of their antenna polarization, in order to suppress the interference between different UEs at a very low overhead cost. This is achieved by a solution where the scheduling unit retrieves information about the polarization of the UE antenna configurations, and based on this information allocates radio resources to the different UEs, with the aim to minimize the interference. The scheduling unit may retrieve the information from the RBSs or from the UEs. The RBS and the UE will determine the polarization and transmit information regarding this polarization to the scheduling unit. The scheduling unit coordinates the allocation of resources with other scheduling units if necessary.
Abstract:
A method of estimating path loss for a channel between a user equipment and a base station of a wireless communication system, the method performed at the base station and comprising the steps of: measuring (302) a signal power PSDrx for a received signal transmitted from the user equipment to the base station on the channel; and estimating (304) a path loss PL*, based on the measured signal power PSDrx and a path loss compensation value a associated with the base station. A base station and a computer readable medium is also described.
Abstract:
A system includes a first device (110) to classify data as one of a control message or a non-control message, and provide the classification of the data to a second device (122). The second device (122) receives the classification of the data, receives information associated with a resource (460), calculates an expected interference associated with the resource (460) based on the information associated with the resource (460), and allocates, to the resource (460), data classified as a control message when the expected interference corresponds to a low expected interference.