Abstract:
The present invention relates to a method for cell selection in a wireless communication system. The method for cell selection by a terminal according to one embodiment of the present invention may comprise the following steps: measuring the channel quality of a first cell; measuring the channel quality of a second cell; determining whether the value obtained by applying an offset to the result of the measurement of the channel quality of the second cell is better than the result of the measurement of the channel quality of the first cell; if the value obtained by applying an offset to the result of the measurement of the channel quality of the second cell is better than the result of the measurement of the channel quality of the first cell, determining whether the value obtained by applying no offset to the result of the measurement of the channel quality of the second cell is better than a preset reference value; and, if the value obtained by applying no offset to the result of the measurement of the channel quality of the second cell is better than the preset reference value, selecting the second cell. According to one embodiment of the present invention, an operable cell can be selected to prevent malfunctions, and interference from a CSG cell may be reduced.
Abstract:
Operation of a terminal for determining which time alignment timer is applied to a certain condition when specific timers operate for each carrier-wave group in the event a wireless communication system using carrier aggregation techniques. A terminal performs communication without malfunctions using a timer suitable for a certain condition. The terminal operates the timer by receiving, from a base station, a message including a timing advance command and an index on a timing advance group (TAG), operating the timer for the TAG, the index has a value of 00 when the TAG includes a first cell. A terminal operates a timer by operating a first timer for a TAG including a first cell, operating a second timer upon receipt of a timing advance command for a second TAG that does not include the first cell, and, if the first timer has expired, deeming the second timer to also be expired.
Abstract:
A user equipment (2) has an ability to operate according to one or more spectrum emission requirement capability values (14) in a wireless communications network having at least a first serving cell (4). A message (6) is received at the user equipment (2) from the first serving cell (4) comprising a first indicator representing a first band designation (8), a second indicator representing a spectrum emission requirement value (10), and at least one additional indicator representing at least one additional spectrum emission requirement value (12), both the first and additional indicators relating to the first band designation. The user equipment (2) performs a comparison of the first and additional spectrum emission requirement values (10, 12) with the one or more spectrum emission requirement capability values (14) and determines a behaviour of the user equipment (2) in relation to the first serving cell (4) in dependence on the comparison.
Abstract:
A method and user equipment (UE) for obtaining power headroom information in a communication system are provided. The method includes acquiring information for a path loss reference, wherein the information for the path loss reference indicates whether the UE applies as the path loss reference either a downlink of a primary cell or a downlink of a secondary cell (SCell), triggering a power headroom report (PHR) if a prohibitPHR-Timer expires and a path loss is changed more than a threshold for at least one activated cell which is used as the path loss reference, and obtaining power headroom information for each activated cell, if extended PHR is used and an uplink resource is allocated for new transmission.
Abstract:
The present invention relates to a method and apparatus for performing a discontinuous reception (DRX) operation while transceiving data using a plurality of carriers in a mobile communication system. The communication method for a terminal according to one embodiment of the present invention comprises the steps of: receiving a control message, including setting information of a secondary serving cell (SCell) to be added and discontinuous reception setting information, from a primary serving cell (PCell); and applying, if the control message includes an indicator indicating that the first base station to which the SCell to be added belongs and the second base station to which the PCell belongs are different from each other, the DRX setting information to the serving cell of a first base station. According to one embodiment of the present invention, a discontinuous reception (DRX) operation is applied upon the occurrence of inter-base-station carrier aggregation, thus reducing the consumption of a battery.
Abstract:
A device and method for handling HARQ feedback in a mobile communication system are disclosed. The HARQ feedback handling method includes: analyzing a control message from a base station to recognize presence of HARQ feedback relationships between downlink carriers and uplink carriers; determining an uplink carrier (a downlink carrier) to support HARQ feedback in response to downlink traffic (uplink traffic) sent through a downlink carrier (an uplink carrier); and sending (receiving) HARQ feedback through the determined uplink carrier (downlink carrier).
Abstract:
The present disclosure relates to converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), and may be applied to intelligent services, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method according to disclosed aspects includes receiving a first control message including a first random access response window for a first cell group, receiving a second control message for adding a second cell group, including information on a second random access response window size for the second cell group, transmitting, on a cell of the second cell group, a random access preamble, and monitoring, on the cell of the second cell group, a random access response based on the second random access response window size for the second cell group.
Abstract:
A method for reporting performance of a terminal in a mobile communication system includes the steps of receiving a request for performance reporting from a base station, determining an indicator of whether a delay time related operation that the terminal supports is in correspondence with the request which corresponds to a pre-set condition, and transmitting a message including the determined indicator to the base station. The size of the performance reporting message may be minimized in reporting the performance of the terminal.
Abstract:
A method of UE includes receiving a radio resource control (RRC) message for configuring bandwidth parts (BWPs) of a serving cell, receiving a physical downlink control channel (PDCCH) indicating activation of a first BWP, performing a BWP switching to the first BWP indicated by the PDCCH, and starting a first downlink BWP timer associated with the first BWP. A UE includes a transceiver, and at least one controller coupled with the transceiver, the at least one controller configured to receive an RRC message for configuring BWPs of a serving cell, receive a PDCCH indicating activation of a first BWP, perform a BWP switching to the first BWP indicated by the PDCCH, and start a first downlink BWP timer associated with the first BWP.
Abstract:
Methods for performing a random access procedure by a terminal and a base station in a wireless communication system, a terminal, and a base station are provided. The method for performing a random access procedure by a terminal in a wireless communication system includes selecting a physical random access channel (PRACH) resource from one or more PRACH resources; transmitting, to a base station, a random access preamble based on the selected PRACH resource; identifying a random access radio network temporary identifier (RA-RNTI) based on information associated with the selected PRACH resource, wherein the information includes identity information for an uplink used for the random access preamble transmission; and monitoring a control channel for a random access response (RAR) based on the RA-RNTI.