Abstract:
A rotary electric machine is composed of an armature core, an armature winding, a rotor core disposed opposite said armature core, a rotary magnetic-flux source for supplying first magnetic flux to the rotor core, a frame for supporting the armature core and the rotor core and a stationary magnetic flux source, fixed to the frame, for supplying second magnetic flux to the rotor core in a direction to supplement the first magnetic flux.
Abstract:
An on-vehicle rotary electric apparatus, such as an on-vehicle generator, is provided. The apparatus comprises a stator having multi-phase windings, a rotor driven to rotate by either an on-vehicle motor or the running drive shaft of a vehicle, and a driving member for driving the field winding. The rotor has a field winding producing a magnetic field. The driving member drives the field winding by supplying the exciting current thereto and changing the exciting current so that the magnetic field rotates differently in a rotation speed from the rotor. Specifically, the driving member comprises a short-circuit winding wound around part of magnetic poles of the rotor and a current-supply unit for supplying, as the exciting current, a single-phase alternating current to the field winding. The short-circuit winding produces a magnetic field delayed in phase by 90 degrees compared to the magnetic field produced by the rotor.
Abstract:
A rotor of a vehicle AC generator is comprised of a rotor core and a field coil. The rotor core is comprised of a boss portion and a plurality of claw-pole portions bending to respectively extend in axial directions from outer circumferences of the boss portion to interleave with each other to form a zigzag space between the claw-pole portions. The field coil comprises a main coil portion disposed on the boss portion, a sub-coil portion disposed between the main coil and the claw-pole portions and a flywheel diode connected in parallel with the main coil. When the field current is cut off, current circulating through the main coil is increased because the energy accumulated in the sub-coil is discharged.
Abstract:
In an alternating current generator, a rotor is provided radially inside a stator core. A rotor core has a cylindrical boss press-fit around a rotor shaft, disc portions extending from an outer periphery of the boss in a radial direction, and claw pieces in connecting with the disc portions radially outside the boss. A field winding is provided between the boss and claw pieces. An annular core is provided on an outer periphery of the claw pieces. The annular core is made of a stack of core sheets and has slits formed in the radial direction. Iron loss is decreased and leaks of magnetic fluxes in the annular core are suppressed by the slits.
Abstract:
A stator of a vehicle AC generator includes a stator core, a multi-phase stator winding formed from a plurality of conductor members. The stator winding has coil-ends at opposite sides of said stator core, and portions of the conductor members in each of the coil-ends are radially aligned to have fixed radial clearances therebetween for introducing cooling air and ensuring insulation of the conductor members.
Abstract:
A stator of an ac generator for vehicle has a stator core which is a lamination of steel sheets and has a plurality of slots cut out in a slot-cutout direction. A plurality of insulators and, subsequently, electric conductors are respectively inserted into the plurality of slots in the slot-cutout direction. The insulators are prevented from being damaged by sharp-edged burs formed when the plurality of conductor segments are inserted in the slot-cutout direction.
Abstract:
In a stator of an ac generator for vehicle, a plurality of insulators are disposed in the slots of the stator to insulate the stator winding from the stator core. Each of the insulators has a smooth edge at one end and a stopper portion at the other end. The stopper portions project from an axial end of the stator core from which conductor segments of the stator winding are inserted. The conductor segments can be inserted into the slots with the smooth edges being at the head and can be easily positioned in the slots by the stopper.
Abstract:
An AC generator for vehicles includes a field rotor, a stator disposed around said field rotor and a frame for supporting the rotor and the stator. The stator has a laminated core having a plurality of slots, aluminum conductors housed in the slots, and an electric insulator. The aluminum conductor is constituted by in-slot portion and a crossover portion for connecting an in-slot portion in one slot to another in-slot portion in a different slot to provide a winding as a whole. The frame is provided with a plurality of windows substantially in a whole periphery thereof at portions encircling the crossover portions and substantially in an outer diametrical direction opposite to the crossover portions.
Abstract:
An alternator for a vehicle includes a field rotor having a pair of pole cores with a plurality of claw poles, a stator disposed around the rotor, and a frame for supporting the rotor and the stator. The frame has a plurality of air intake windows at axial ends thereof and a plurality of air discharge windows at circumferential portions thereof. The rotor has a cooling fan with a plurality of fan blades disposed at one end of the pair of pole cores. The number of the blades is smaller than the number of the claw poles.
Abstract:
It is an object of this invention to provide a compact high-power alternator for a vehicle. An alternator for a vehicle includes a stator serving as an armature, and a rotor serving to generate a magnetic field. The rotor includes a pole core having a cylindrical portion, a yoke portion, and a claw-like magnetic pole portion. The stator includes a stator iron core, an armature coil, and an insulator. A ratio L1/L2 of an axial-direction length L1 of the stator iron core to an axial-direction length L2 of the pole core is in a range of 0.7 to 1.0.