Abstract:
Systems and methods disclosed in certain implementations relate to identifying, by a processor, user equipments (UEs) associated with a base station, determining applications associated with the UEs; allocating portions of a bandwidth associated with the base station to the applications; and scheduling transmission of data from the base station based on allocating the portions of the bandwidth to the applications. Scheduling transmission of data from the base may include, for example, determining a particular application associated with the data; determining a particular bandwidth associated with the particular application; determining whether the data can be transmitted from the base station based on the particular bandwidth; and scheduling the data for delivery when the data can be transmitted from the base station based on the particular bandwidth.
Abstract:
A system may be configured to determine a floor of a building in which the user device is located at a time a call was placed. The information, indicating the determined floor, may be provided to a callee, such as a public safety answering point (“PSAP”). The floor may be determined based on, for example, comparing an altitude of the user device and/or a list of networks or devices that are visible to the user device, to a set of reference information.
Abstract:
A system comprising: one or more server devices to: set a first network threshold level for determining network congestion in a network; set rate limiting criteria for determining when one or more subscribers will be rate limited; detect an increase in network congestion at a base station above the first network threshold level; identify one or more subscribers meeting one or more of the rate limiting criteria; rate limit network traffic associated with the one or more subscribers; detect a decrease in network congestion at the base station below a second network threshold level; and remove the rate limiting of the network traffic associated with the one or more subscribers.
Abstract:
Techniques described herein may enable a wireless telecommunications network to implement different types of core networks, and enable end devices—user equipment (UEs) such as broadband devices (e.g., smartphones, tablets) and Internet of Things (IoT)/Machine Type Communication (MTC) devices (sometimes referred to herein as Machine-to-Machine (M2M) devices)—to connect to whichever core network is most suitable to the capabilities of the UE. For example, a broadband core network may provide UEs with broadband connectivity for media sessions (e.g., telephone calls, video calls, etc.) and broadband Internet access. An M2M core network may provide UEs with network connectivity consistent with the lower resource usage patterns typical M2M devices. Additionally, a UE connected to a first core network (e.g., an M2M core network) may detect a prompt to connect to a second core network (e.g., a broadband core network), and in response, may dynamically switch to the second core network.
Abstract:
A server may receive provisioning information for a client device; provision, based on the provisioning information, the client device to prepare the client device to gather data to form a data record and communicate with a user device, via the server, to receive or transmit information relating to the data record; and receive a communication request from the user device via a first network. The communication request may include a request to transmit the information relating to the data record to or from the client device. The server may communicate with the client device via a second network, on behalf of the user device, to process the communication request based on authorizing the user device. The second network may be different from the first network. The server may provide a response to the communication request to the user device. The response may include the information relating to the data record.
Abstract:
A system may be configured to receive analytics information regarding a cell of a wireless telecommunications network. The cell may be associated with multiple carriers, which may each be associated with, for example, a particular radio access technology (“RAT”), frequency band, or frequency sub-band. The system may dynamically rank the carriers based on measures of load associated with the carriers (as indicated by the analytics information), and may generate system information blocks (“SIBs”) that include the dynamic rankings. The SIBs may be provided to user devices, which may select carriers, via which to connect to the cell, based on the dynamic rankings.
Abstract:
A device receives configuration information that instructs the device about when to send content to a user device. The device also receives content from an application server at a first time, and stores the content. The device determines, based on the configuration information, that the content is to be sent to the user device, and sends the content to the user device based on the determination. The content is sent to the user device at a second time that is later than the first time.
Abstract:
A device receives, from a content provider, traffic parameters associated with a video content request received from a fixed user device connected to a wireless access network, and determines, based on the traffic parameters, a trigger for creating a dedicated bearer for the fixed user device in the wireless access network. The device also provides the trigger to the wireless access network, where the wireless access network creates the dedicated bearer for the fixed user device based on the trigger, and the wireless access network assigns quality of service (QoS) parameters, based on the traffic parameters, to video content delivered to the fixed user device.
Abstract:
A device is configured to obtain interference information indicating interference levels at frequencies. The device is configured to determine a frequency for a small cell to use to communicate with a client device based on the interference information. The small cell is capable of using the frequencies to communicate and the frequency is determined from among the frequencies. The device is further configured to provide frequency information to the small cell instructing the small cell to communicate with the client device using the frequency.
Abstract:
A UAV gateway may be used to assist in the optimization of communications between a UAV and a cellular wireless network. The UAV may include a steerable, multi-faceted antenna array. In one implementation, the UAV may receive, from the cellular wireless network, network description information, describing the physical state of the cellular wireless network. The network description information may include, for example, locations of base stations near the UAV, transmit power associated with the base stations (or with cells provided by the base stations), and/or the transmit antenna patterns associated with the base stations. The UAV may use this information to optimize its communications with the cellular network.