Abstract:
A method, a device, and a non-transitory storage medium are described in which a mapping table is transmitted to a user device. The mapping table includes, for each entry, an index, a frequency band, and wireless services available on the frequency band. Index information corresponding to a frequency band and wireless service available in a location associated with the user device is communicated to the user device. An icon associated with the wireless service is displayed on a display of the user device. A network device determines that the user device is using the wireless service to communicate via a wireless network and transmits, to a core network, an indication that the user device is using the wireless service on the frequency band.
Abstract:
A device may receive data relating to a site plan and image data relating to a network device. The device may determine a device identifier based on the image data, associate the device identifier with the site plan based on a common attribute between the network device and the site plan, and cause a certificate to be generated based on an authentication request to a network controller. The authentication request may cause the network controller to generate the certificate based on the device identifier and/or the site plan. The device may cause an Internet protocol (IP) address to be assigned to the network device based on the certificate, a location of the network device, and/or another related parameter, cause a node configuration to be generated based on the IP address, the device identifier, and/or the site plan, and provision the network device according to the node configuration.
Abstract:
Embodiments described herein provide for a hybrid network device to serve as a zero- or low-latency relay for communications between a wireless network, such as a licensed wireless network, and one or more other devices. The hybrid network device may establish a connection with a base station of a wireless network via a licensed radio access technology (“RAT”). The hybrid network device may communicate with one or more devices via an unlicensed RAT. The hybrid network device of some embodiments may aggregate communications from devices and may serve as a single connection endpoint with respect to the base station, such that the base station need not maintain a relatively large number of connections to accommodate a relatively large quantity devices.
Abstract:
A system may be configured to identify that a user device is connected to a first radio access network (“RAN”), via a first technology; and to identify that the user device is capable of accessing a second RAN, via a second technology. The system may further be configured to instruct the user device to concurrently connect to the second RAN and the first RAN, send or receive a first type of traffic via the first RAN, and send or receive a second type of traffic via the second RAN.
Abstract:
A method for determining a Quality of Service (QoS) policy can be based on requested bandwidth. The method may initially receive a connection request which includes a requested bandwidth that corresponds to an application. The method may then determine a policy for an application data flow associated with the application based on the connection request. A bandwidth designation, which is based on the requested bandwidth, may be assigned to the application data flow based on the determined policy. Finally, the policy and the bandwidth designation may be provided so that a bearer can be assigned.
Abstract:
A method for determining a Quality of Service (QoS) policy can be based on requested bandwidth. The method may initially receive a connection request which includes a requested bandwidth that corresponds to an application. The method may then determine a policy for an application data flow associated with the application based on the connection request. A bandwidth designation, which is based on the requested bandwidth, may be assigned to the application data flow based on the determined policy. Finally, the policy and the bandwidth designation may be provided so that a bearer can be assigned.
Abstract:
Bandwidth for a radio access network may be efficiently allocated for certain voice over LTE (VoLTE) services. In one implementation, a request associated with traffic flows may be received. Each of the traffic flows may be associated with an amount of guaranteed bit rate (GBR) traffic. The method may further include selectively summing the GBR traffic, to obtain an aggregate bandwidth value. The method may further include reserving an amount of GBR bandwidth corresponding to the previous version of the aggregate bandwidth value when a comparison indicates that the aggregate bandwidth value is less than the previous version of the aggregate bandwidth value; and reservation an amount of GBR bandwidth corresponding to the aggregate bandwidth value when a comparison indicates that the aggregate bandwidth value is not less than the previous version of the aggregate bandwidth value.
Abstract:
Digital signal processors (DSPs) process the digital baseband signals associated with CPRI links between BBUs and RRHs. The DSPs may be implemented at the RRH nodes (e.g., at the link leading to the BBU node), at the BBU node (e.g., at the links leading to the RRH nodes), or at both. The DSPs may be used to increase performance of the RAN. For example, the DSPs may implement digital filters designed to enhance the performance of the RAN.
Abstract:
A system may include a first network device, configured to establish first and second channels with a user device, the first and second channels being channels of a network layer of an Open Systems Interconnect (“OSI”) model, receive traffic associated with the user device, and output the traffic via one of the first channel or the second channel. The system may also include a second network device, configured to receive the traffic outputted by the first network device, identify via which channel, of the first and second channels, the traffic was outputted, determine a paging scheme associated with the identified channel, generate a downlink data notification (“DDN”) request, the DDN request indicating the determined paging scheme, and output the DDN request to a third network device, wherein the third network device performs paging, based on the determined paging scheme, to locate the user device.
Abstract:
A method for endpoint device service scaling may include identifying, at a repository device, an endpoint device that is attached to a network; and determining, at the repository device, whether the endpoint device is connected to an external display. The method may include determining, at the repository device, profile data associated with the external display in response to determining that the endpoint device is connected to an external display; and identifying, at the repository device, a connection that provides network access to the endpoint device. The method may further include specifying a service based on at least one of the profile data or the identified connection.