Abstract:
A method for performing micro fabrication includes using, as a photomask, a self-organizing material-patterned substrate which is soluble in an organic solvent. A method for emitting light includes emitting the light in a pattern of a nucleic acid which is a self-organizing material immobilized on a self-organizing material-patterned substrate. An immobilization layer containing a binding material capable of binding to a self-organizing material is formed on a substrate. Then this immobilization layer is patterned by transferring a protrusion and recess pattern formed in a mold thereto by the imprint process. The self-organizing material is supplied onto the side having the protrusion and recess pattern of the immobilization layer transferred thereto. Thus, the self-organizing material is immobilized according to the protrusion and recess pattern of the immobilization layer owning to the self-organizing ability of the material per se and the binding ability of the binding material contained in the immobilization layer.
Abstract:
The present invention obtains subband signals by performing a multiresolution decomposition by a wavelet frame with orientation selectivity or a filterbank with orientation selectivity that is a set of an approximate filter with no orientation and a plurality of detail filters with respective orientations on image data, and, when an image is reconstructed by summing the obtained subband signals, generates reconstructed image data that creates a floating illusion by attenuating or amplifying a subband signal corresponding to at least one of detail filters with a predetermined orientation relative to a floating direction, in which an image is desired to be floated due to an illusion, among the detail filters.
Abstract:
A program analysis/verification service provision system (1) includes: a tool registration/search section (313) for extracting, from a plurality of program analysis/verification tools (virtual machines) stored in a tool storage section (320), a virtual machine (T) in which a program analysis/verification tool for use in analysis/verification of a target program (P) has been installed and set; and a virtual machine execution environment section (120) for analyzing/verifying the target program (P) with use of the virtual machine (T) thus extracted.
Abstract:
A planar patch clamp device comprising: an electrical insulating substrate (2) having a first surface having a cell arrangement region and a second surface of the opposite surface and having a through hole (3) in the cell arrangement region which does not pass cells, but pass liquid; a first reservoir (6) provided at the first surface side (2S) of the electrical insulating substrate (2) to be able to communicate with the through hole (3) and hold a first conductive liquid; a first electrode part (7) arranged to be able to be electrically conductive with the first reservoir (6) through the first conductive liquid; a second reservoir (6′) provided at the second surface side (2S′) of the electrical insulating substrate to be able to communicate with the through hole (3) and hold a second conductive liquid; a second electrode part (7′) arranged to be able to be electrically conductive with the second reservoir (6′) through the second conductive liquid; a supply path (8) connected to the second reservoir (6′) and supplying the second conductive liquid to the second reservoir; a discharge path (9) connected to the second reservoir and discharging the second conductive liquid from the second reservoir (6′); and a valve (10) provided in the supply path and/or discharge path, able to allow or stop the flow of the second conductive liquid, and also able to allow or stop electrical conduction between the second reservoir (6′) and the second electrode part (7′).
Abstract:
A nucleic acid-encapsulating polymer micelle complex is formed of a block copolymer containing an uncharged hydrophilic polymer chain block and a cationic polymer chain block; and two single-stranded DNA molecules having mutually complementary base sequences of 1000 or more bases in length, double-stranded DNA of 1000 or more base pairs in length in which at least a part of a double helix structure is dissociated and forms a single-stranded structure, or one single-stranded DNA molecule of 1000 or more bases in length.
Abstract:
There is provided a biocompatible electrode structure which is capable of being connected to an electronic circuit, and in which a conductive nanomaterial is dispersed into a polymeric medium, in which a density of the conductive nanomaterial on an opposite side of a connection surface to the electronic circuit, in the polymeric medium is lower than that on the side of the connection surface to the electronic circuit.
Abstract:
When obtaining subband signals by performing multiresolution decomposition on image data using a broad-sense pinwheel framelet or a pinwheel wavelet frame, having a degree, that is a set of an approximate filter with no orientation and a plurality of detail filters with respective orientations, and acquiring processed image data by the subband signals in a decomposition phase of the multiresolution decomposition, or processed image data that has been reconstructed into an image by summing the subband signals in a synthesis phase of the multiresolution decomposition, the present invention performs attenuation or amplification of the subband signals in the decomposition phase of the multiresolution decomposition that correspond to at least one of the filters.
Abstract:
A point-of-gaze detection device according to the present invention detects a point-of-gaze of a subject toward a surrounding environment. The device includes: an eyeball image obtaining means configured to obtain an eyeball image of the subject; a reflection point estimating means configured to estimate a first reflection point, at which incoming light in an optical axis direction of an eyeball of the subject is reflected, from the eyeball image; a corrected reflection point calculating means configured to calculate a corrected reflection point as a corrected first reflection point by correcting the first reflection point on the basis of a personal parameter indicative of a difference between a gaze direction of the subject and the optical axis direction of the eyeball; and a point-of-gaze detecting means configured to detect the point-of-gaze on the basis of light at the corrected reflection point and light in the surrounding environment.
Abstract:
There are provided with a source part made of a ferromagnetic material magnetized in a first direction, a drain part made of a ferromagnetic material magnetized in the first direction, and separated from and arranged in parallel to the source part, a channel part arranged between the source part and the drain part, and bonded with the source part and the drain part directly or through a tunnel layer, and a circularly polarized light irradiation part that irradiates the channel part with circularly polarized light for controlling a direction of spin of the channel part.
Abstract:
The microscope apparatus includes a light source which outputs linear polarization having a first wavelength, a polarization conversion element which includes a liquid crystal layer, and by causing linear polarization to pass the liquid crystal layer, converts linear polarization to radial polarization, an objective lens which focuses the radial polarization onto an object surface, a condenser lens which collimates the light reflected from the object surface, a light receiving element which receives light collimated by the condenser lens and outputs signal in accordance with the intensity of light, and a controller which applies electric voltage in accordance with the first wavelength to the liquid crystal layer of the polarization conversion element. The polarization conversion element is disposed in the pupil plane of the objective lens on the light source side.