Abstract:
An object of the present invention is that variations in an applied membrane potential in the planar patch clamp device are suppressed to reduce a noise current, thereby enabling accurate measurement of an ion channel current.Disclosed is a planar patch clamp device including: an electrically insulative substrate provided with one or more fine through holes; a liquid reservoir that holds a conductive liquid provided on both surface sides of the through hole; and energizable electrode sections provided in the liquid reservoir; these electrode sections including: (a) an electrode vessel, at least part of which is made of an inorganic porous material, (b) an electrode in which a chloride NmCl layer is formed on the surface of a noble metal Nm, and (c) an electrode solution containing NmCl and an alkali metal chloride being dissolved therein at a saturated concentration.
Abstract:
A planar patch clamp device is disclosed, which can be used for culturing a neuron in the device so as to form a neuron network, and detecting an electrical property of the neuron that forms the neuron network. The planar patch clamp device includes a plurality of protrusions formed on a first surface, an extracellular matrix forming substance which is coated on the peripheries of a through hole, and electrode sections.
Abstract:
Provided is a device for seeding cells in a plurality of cell arrangement areas in a simple manner and a short period of time. A seeding and culturing device (1) for cells capable of forming a nerve network, the device comprising a cell-culturing substrate (2) having a plurality of cell arrangement areas (8) enclosed by a plurality of projecting parts, and a flow channel substrate (3) arranged on the cell-cultivating substrate (2) and having a plurality of through-holes (14), wherein the through-holes (14) are configured so as to provide flow channels in which the upper surface side of the substrate is an entrance (15) and the lower surface side of the substrate is an exit, and the exit (16) of the flow channels is positioned above any of the cell arrangement areas.
Abstract:
A planar patch clamp device comprising: an electrical insulating substrate (2) having a first surface having a cell arrangement region and a second surface of the opposite surface and having a through hole (3) in the cell arrangement region which does not pass cells, but pass liquid; a first reservoir (6) provided at the first surface side (2S) of the electrical insulating substrate (2) to be able to communicate with the through hole (3) and hold a first conductive liquid; a first electrode part (7) arranged to be able to be electrically conductive with the first reservoir (6) through the first conductive liquid;a second reservoir (6′) provided at the second surface side (2S′) of the electrical insulating substrate to be able to communicate with the through hole (3) and hold a second conductive liquid; a second electrode part (7′) arranged to be able to be electrically conductive with the second reservoir (6′) through the second conductive liquid; a supply path (8) connected to the second reservoir (6′) and supplying the second conductive liquid to the second reservoir; a discharge path (9) connected to the second reservoir and discharging the second conductive liquid from the second reservoir (6′); and a valve (10) provided in the supply path and/or discharge path, able to allow or stop the flow of the second conductive liquid, and also able to allow or stop electrical conduction between the second reservoir (6′) and the second electrode part (7′).
Abstract:
Provided are a culture device for neuronal network formation that makes it possible to construct a neuronal network while restricting movement of neurons grown in the culture medium, and a means for the use thereof. A culture device for neuronal network formation in which is formed a cell fixation part surrounded by a plurality of projections on a flat substrate that can be filled with cell culture medium, and in which (1) there are established spaces having widths such that the neuron cells cannot pass through between the plurality of projections, (2) the inner diameter is such that the cell fixation part can house the cells of from one to a number of neurons, (3) the substrate surface, which is the bottom of the cell fixation part, is coated by an extracellular matrix-forming substance and/or provided with minute through-holes for suctioning culture medium by a suction device on the lower side of the substrate surface.
Abstract:
Provided is a device for seeding cells in a plurality of cell arrangement areas in a simple manner and a short period of time. A seeding and culturing device (1) for cells capable of forming a nerve network, the device comprising a cell-culturing substrate (2) having a plurality of cell arrangement areas (8) enclosed by a plurality of projecting parts, and a flow channel substrate (3) arranged on the cell-cultivating substrate (2) and having a plurality of through-holes (14), wherein the through-holes (14) are configured so as to provide flow channels in which the upper surface side of the substrate is an entrance (15) and the lower surface side of the substrate is an exit, and the exit (16) of the flow channels is positioned above any of the cell arrangement areas.
Abstract:
A planar patch clamp device comprising: an electrical insulating substrate (2) having a first surface having a cell arrangement region and a second surface of the opposite surface and having a through hole (3) in the cell arrangement region which does not pass cells, but pass liquid; a first reservoir (6) provided at the first surface side (2S) of the electrical insulating substrate (2) to be able to communicate with the through hole (3) and hold a first conductive liquid; a first electrode part (7) arranged to be able to be electrically conductive with the first reservoir (6) through the first conductive liquid; a second reservoir (6′) provided at the second surface side (2S′) of the electrical insulating substrate to be able to communicate with the through hole (3) and hold a second conductive liquid; a second electrode part (7′) arranged to be able to be electrically conductive with the second reservoir (6′) through the second conductive liquid; a supply path (8) connected to the second reservoir (6′) and supplying the second conductive liquid to the second reservoir; a discharge path (9) connected to the second reservoir and discharging the second conductive liquid from the second reservoir (6′); and a valve (10) provided in the supply path and/or discharge path, able to allow or stop the flow of the second conductive liquid, and also able to allow or stop electrical conduction between the second reservoir (6′) and the second electrode part (7′).
Abstract:
An object of the present invention is that variations in an applied membrane potential in the planar patch clamp device are suppressed to reduce a noise current, thereby enabling accurate measurement of an ion channel current.Disclosed is a planar patch clamp device including: an electrically insulative substrate provided with one or more fine through holes; a liquid reservoir that holds a conductive liquid provided on both surface sides of the through hole; and energizable electrode sections provided in the liquid reservoir; these electrode sections including: (a) an electrode vessel, at least part of which is made of an inorganic porous material, (b) an electrode in which a chloride NmCl layer is formed on the surface of a noble metal Nm, and (c) an electrode solution containing NmCl and an alkali metal chloride being dissolved therein at a saturated concentration.