Abstract:
An optical-interrupter provides a mechanically integrated electric light source and electric light sensor positioned across a gap to transmit a light beam across the gap that may be interrupted with an opaque vane. The optical-interrupter uses conventional LEDs for both the light source and a light receiver. An integrated circuit comparator may be used to provide an adjustable threshold for the determination of whether the light beam is blocked.
Abstract:
The present invention provides a photo-sensor with a stable current limiting function and pixel reset function. When the incident light quantity of the phototransistor is equal to or less than a predetermined quantity and the base potential of the phototransistor is in a first potential of an operation point in a stationary state, an MOSFET for discharging an electric charge is controlled so as to be turned OFF. In addition, when the incident light quantity of the phototransistor is equal to or more than the predetermined quantity, a MOSFET for detecting an electric current is controlled so as to operate in a saturation region. When the base potential of the phototransistor has changed to a second potential from the first potential, the MOSFET for discharging an electric charge is controlled so as to be turned ON.
Abstract:
A photovoltaic efficiency estimator, comprising a photovoltaic cell covered by a sunlight-penetrable surface; an illuminator for artificially illuminating said surface; and a controller connected to said photovoltaic cell and to said illuminator, said controller being configured to measure an amount of voltage produced in said photovoltaic cell as a result of the artificial illumination by said illuminator, so as to estimate a decrease in the efficiency of said photovoltaic cell caused by dirt on said surface.
Abstract:
A system and method for detecting the presence of a moving object within a detection zone is provided. The system includes a first sensor responsive to light in a first range of wavelengths in the detection zone, a second sensor responsive to light in a second range of wavelengths in the detection zone, wherein the second range of wavelengths is different from the first range of wavelengths, and a processing component for generating a variable threshold value for the first sensor based upon at least maximum and minimum output signals from the second sensor within a predetermined period of time, and for comparing the first output signal with the variable threshold value. The processing component generates an activating signal if the first output signal exceeds the threshold value.
Abstract:
In an ambient light sensor according to the present invention, a current amplification portion which amplifies a light current obtained by a light receiving portion to generate an output signal includes: a current amplification stage that has: a first current mirror amplifier which is composed of a bipolar transistor, and a second current mirror amplifier which is composed of a field effect transistor connected in parallel with the first current mirror amplifier; and a changeover control circuit which monitors an amplified current input into the current amplification stage, and performs changeover control of the first and second current mirror amplifiers according to a value of the amplified current.
Abstract:
An apparatus includes an array containing N sub-diffraction limit light sensors each having an associated light absorption activation threshold for switching from a reset state to an activated state, where the light absorption activation values lie within a range of values. The apparatus further includes a processor connected with a memory including computer program code, where the memory and computer program code are configured to, with the processor, cause the apparatus at least to perform estimating an intensity of light that illuminates the array based on electrical outputs of the array.
Abstract:
Ambient light is detected by a photodiode circuit by measuring the time taken for a digital output of the photodiode circuit to change state in response to exposure of a photodiode of the photodiode circuit to that ambient light. A nominal time for state change is calculated based on photodiode circuit characteristics. Furthermore, an effective time for the photodiode circuit digital output to change state is determined in a calibration mode where the photodiode has been disconnected and a reference current is applied to the circuit. An illumination value of the detected ambient light is then calculated as a function of: the measured time, the effective time and the nominal time.
Abstract:
Provided is a photodetection device which is small in size and has excellent sensitivity. A photodetection device puts cathode terminals of photodiodes having different spectral characteristics into an open end state, and detects light intensity of a desired wavelength region according to a difference in electric charges that have been stored in those photodiodes in a given period of time. The photodiodes employ a system of storing electric charges, and hence even if a photocurrent is small, the photocurrent may be stored to obtain the electric charges required for detection, and the downsizing and high detection performance of a semiconductor device that forms the photodiodes may be achieved. Further, a wide dynamic range may be realized with an electric charge storage time being variable according to the light intensity, to intermittently drive an element required for difference detection at the time of difference detection so as to suppress electric power consumption, or to average the output so as to reduce flicker.
Abstract:
A photocurrent sensing circuit includes a logarithmic compression circuit; a cancellation circuit logarithmically compressing a current substantially equal in temperature coefficient of the photocurrent to convert the same into a voltage, and performing an addition or a subtraction on the converted voltage and a voltage converted from a photocurrent by logarithmically compression; a logarithmic operation circuit logarithmically compressing the voltage received from the cancellation circuit to produce a first voltage, logarithmically compressing a voltage proportional to a thermal voltage of the photocurrent to produce a second voltage, logarithmically compressing a current having thermal dependence of nearly zero to produce a third voltage and performing an addition or a subtraction of each of the second and third voltages with respect to the first voltage to produce a fourth voltage; and an inverse logarithmic transformation circuit performing inverse logarithmic transformation on the fourth voltage to output a current.
Abstract:
A method and apparatus are provided for processing light from a light source. The method includes the steps of measuring a predetermined set of characteristics of the light source and detecting flicker when the predetermined set of characteristics exceed a corresponding flicker fusion threshold value.