Abstract:
A detector apparatus is configured to receive light and generate electrical signals. The detector apparatus includes a housing, a detector disposed in the housing and a cooling component disposed in the housing. The cooling component electrically insulates the detector with respect to the housing or is part of an insulator electrically that insulates the detector with respect to the housing.
Abstract:
A microchannel plate assembly includes a plurality of microchannel plates that are aligned along a common axis and coupled together. The microchannel plates each have an object-side surface and an image-side surface and the assembly has respective interfaces between the image-side surface and the object-side surface of adjacent microchannel plates. At least one ion barrier film is disposed on at least one of the microchannel plates, but only on the object-side surfaces in the interfaces.
Abstract:
A photomultiplier according to an embodiment of the present invention has a sealed container the interior of which is maintained in a vacuum state, and an electron multiplier unit housed in the sealed container, and the sealed container is partly constructed of ceramic side tubes, on the assumption that the photomultiplier is used under high-temperature, high-pressure environments. The photomultiplier further has a structure for fixing an installation position of the electron multiplier unit relative to the sealed container, for improvement in anti-vibration performance.
Abstract:
A detector apparatus that is embodied to receive light and to generate electrical signals has a housing and a detector arranged in the housing. The detector includes a light sensor that is embodied to receive light and to release electrons. The light sensor is at a lower electrical potential level than the housing; and that the detector is in thermally conductive contact with the housing via an electrically insulating intermediate arrangement, the thermal conduction direction inside the housing being opposite to the light propagation direction of the light to be detected.
Abstract:
An electron multiplier includes an insulating substrate which includes an electrical wiring pattern and in which a through-hole is formed, an MCP arranged on one side of the through-hole of the insulating substrate and electrically connected to the electrical wiring pattern, a shield plate arranged in one side of the MCP and electrically connected to the MCP, an anode arranged on the other side of the through-hole and electrically connected to the electrical wiring pattern, and a signal readout terminal fixed to the insulating substrate for reading a signal from the anode. The shield plate is formed to include the MCP when viewed in a thickness direction. A through-hole exposing at least a portion of the MCP is formed in the shield plate. The insulating substrate, the MCP, the shield plate and the anode are fixed to each other to be integral.
Abstract:
A method of manufacturing an imaging component is provided comprising placing a focusing device in between a laser generator and a scintillator element; generating a laser using the laser generator; focusing the laser using the focusing device such that a focal spot of the laser is coincident with a portion of the isotropic portion; using the laser to alter the optical properties at the focal spot such that anisotropy is generated in the isotropic portion; and moving the focal spot relative to the scintillator element such that a three-dimensional pattern with altered optical properties is generated. The three-dimensional pattern controls the spread of photons within the scintillator element.
Abstract:
A large area hybrid photomultiplier tube that includes a photocathode for emitting photoelectrons in correspondence with incident light, a semiconductor device having an electron incident surface for receiving photoelectrons from the photocathode, and a cone shaped container. The container has a first opening and a second opening. The photocathode is disposed at the first opening, and the semiconductor device is disposed at the second opening.
Abstract:
A photomultiplier tube, a photomultiplier tube unit, and a performance-improved radiation detector for increasing a fixing area of a side tube in a faceplate while increasing an effective sensitive area of the faceplate. In the photomultiplier tube, a side face (3c) of the faceplate (3) protrudes outward from an outer side wall (2b) of a metal side tube (2), so that a light receiving area for receiving light passing through a light receiving face (3d) of the faceplate (3) is increased. The overhanging structure of the faceplate (3) is conceived based on a glass refractive index. The overhanging structure is aimed to receive light as much as possible which has not been received before. When the metal side tube (2) is fused to the glass faceplate (3), a fusing method is adopted due to joint between glass and metal. Joint operation between the faceplate (3) and the side tube (2) is reliably ensured. Accordingly, the overhanging structure of the faceplate (3) is effective.
Abstract:
A metal side tube (2), a glass faceplate (3), and a stem plate (4) constitute a hermetically sealed vessel (5) for a photomultiplier tube. An edge portion (20) is provided at on open end (A) of the side tube (2). The edge portion (2) is embedded in the faceplate (3) in such a manner as to strike on the faceplate (3). Accordingly, high hermeticity at a joint between the side tube (2) and the faceplate (3) is ensured. The edge portion (20) extends upright in an axial direction of the side tube (2), so that the edge portion (20) can be embedded as close to a side face (3c) of the faceplate (3) as possible. This structure increases an effective sensitive area of the faceplate (3) to nearly 100%, and decreases dead area as close to 0 as possible. As described above, the photomultiplier tube (1) according to the present invention has enlarged effective sensitive area of the side tube (3) and enhanced hermeticity of the joint between the faceplate (3) and the side tube (2).
Abstract:
Photomultiplier tubes with improved collection of incident radiation, especially from the periphery of the front face of the tube, and that more efficiently couple the collected radiation to the photocathode, and moreover have higher packing densities when assembled into arrays, resulting in enhanced imaging characteristics. The improvements in radiation collection and photomultiplier tube packing density are gained by a combination of several features including: tapering the edges of the faceplate so that the faceplate subtends an area as large or larger than any other cross-sectional area of the photomultiplier tube; forming the junction between the faceplate and metal tube on the underside of the faceplate, and in such a manner as to avoid obscuring the optical path between the incident radiation and photocathode; and utilizing the tapered edge of the faceplate as a reflector to couple radiation incident on the periphery of the faceplate to the photocathode.