Abstract:
A display panel includes a gate line circuit. The gate line circuit includes a gate driver, a control circuit and a gate line. The gate driver generates a first driving signal with alternate high and low levels. The first driving signal has a first rising edge and a first falling edge. The control circuit receives the first driving signal and generates a second driving signal. The second driving signal has a second rising edge and a second falling edge. The second rising edge and the second falling edge are respectively smoother than the first rising edge and the first falling edge. The control circuit includes at least one capacitor. The capacitor is charged in a first direction in response to the first rising edge of the first driving signal. The capacitor is charged in a second direction in response to the first falling edge of the first driving signal.
Abstract:
Systems for downloading location-based applications and associated methods are disclosed. The system can include a memory storing computer-executable instructions and a processor for executing the instructions. The instructions include communicating with a storage device storing a plurality of application packages having associated locations, and receiving a search criterion from a user via a user interface. The instructions further include selecting the application packages based on the search criterion, and displaying at least one selected application package on a map through the user interface. The selected application package can be positioned on the map based on the corresponding associated locations. The instructions further include allowing the user to download the selected application package through the user interface.
Abstract:
A display device including a pixel unit, a selection unit, and a control unit is disclosed. The pixel unit includes a driving transistor and a capacitor. The driving transistor includes a gate and a source. The capacitor is coupled between the gate and the source. The selection unit selectively transmits a first voltage or a second voltage to the driving transistor. The control unit controls the selection unit and receives the voltage of the source.
Abstract:
A mobile device chip is provided. The mobile device chip includes a main processor, a multimedia processor, and a direct memory access (DMA) circuit. The multimedia processor is electrically coupled to the main processor. The DMA circuit accesses storage, and the DMA circuit is electrically coupled to the multimedia processor. When the mobile device chip operates in a normal mode, the main processor provides file accessing information of at least part of an audio file stored in the storage to the multimedia processor. When the mobile device chip operates in a power-saving mode, the multimedia processor obtains the data of the at least part of the audio file stored in the storage through the DMA circuit according to the file accessing information provided by the main processor.
Abstract:
The present invention relates to an operational amplifier comprising an input-stage circuit, a floating current mirror circuit, and an output-stage circuit. The input-stage circuit receives an input signal and produces a control signal. The floating current mirror circuit is coupled to the input-stage circuit, and produces a mirror current according to the control signal. The output-stage circuit is coupled to the floating current mirror circuit, and produces a driving signal according to the mirror current. When the operational amplifier is operating in the static mode, the output-stage circuit further produces a static current according to the mirror current. Thereby, by using the floating current mirror circuit, the purpose of low power consumption can be achieved while driving to the high-voltage mode or to the low-voltage mode.
Abstract:
A driving apparatus includes a voltage transforming unit and a detector. The driving apparatus is used for supplying a drive voltage to a load. The voltage transforming unit is used for transforming a direct current (DC) voltage to the drive voltage. The detector is connected to the load for detecting a forward voltage across the load to generate a detecting voltage; wherein the detector compares the detecting voltage with a first reference voltage. If the detecting voltage is smaller than the first reference voltage, the detector generates a first feedback signal; the voltage transforming unit increases the drive voltage according to the first feedback signal, the detecting voltage is defined by subtraction of the forward voltage from the drive voltage.
Abstract:
The invention provides a light emitting device. A light emitting device includes a light emitting component capable of radiating a light. A first fluorescent layer is capable of radiating a first light of a first wavelength range while being excited by the light. A second fluorescent layer is capable of radiating a second light of a second wavelength range while being excited by the light. A first fluorescent layer is between the light emitting component and the second fluorescent layer, and the first wavelength range is longer than the second wavelength range.
Abstract:
A method and apparatus for incorporating a third user into an instant message (IM) session. In one embodiment, an IM server receives a first IM from a first user directed toward a second user. The IM server makes a determination that the second user is not available to respond to the first IM. In response to the determination, the IM server identifies a third user to whom the first IM is to be forwarded, and automatically forwards the first IM to the third user. In another embodiment, the IM server receives a transfer request from the second user to transfer the IM session from the second user to the third user. The IM server automatically determines a subset portion of a plurality of IMs communicated between the first user and the second user, and provides the transfer request and the subset portion to the third user.
Abstract:
The invention provides a driving circuit applied in a LCD apparatus and operating method thereof. The driving circuit includes at least one first channel, at least one second channel, a timing controller, and a panel driver. The timing controller includes a digital signal switching unit. The digital signal switching unit selectively performs a polarity exchange to a first digital data signal and a second digital data signal according to a control signal. The panel driver includes an analog signal switching unit. The analog signal switching unit performs a switching corresponding to the polarity exchange according to the control signal to make the driving circuit selectively operated under a first operation mode or a second operation mode.