Abstract:
Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion and allows for the determination of optimized pretreatment conditions. Additionally, ethanol yields from a Simultaneous Saccharification and Fermentation process are improved 5-25% by treatment with a lignin-blocking polypeptide and/or protein. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.
Abstract:
A crystal, a preparation method and 3D structure of CD147 extracellular region are provided. Such 3D structure is useful in the determination of the active site of CD147 extracellular region by computer modeling or molecular docking method. The crystal and/or 3D structure are useful in a structure-based drug design and the selection of an antibody, a ligand or an interacting molecule of CD 147 extracellular region.
Abstract:
The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
Abstract:
The invention provides apparatuses and techniques for controlling flow between a manifold and two or more connecting microchannels. Flow between plural connecting microchannels, that share a common manifold, can be made more uniform by the use of flow straighteners and distributors that equalize flow in connecting channels. Alternatively, flow can be made more uniform by sections of narrowed diameter within the channels. Methods of making apparatus and methods of conducting unit operations in connecting channels are also described.
Abstract:
The HIV-1 protein Vif comprises a multimerization domain that allows Vif-Vif interaction and Vif multimerization, which is important for Vif function in the HIV-1 life-cycle. A method for screening for an antagonist of Vif comprises contacting the multimerization domain of Vif with a test compound that specifically binds the multimerization domain. Antagonists identified by the screening assay inhibit Vif multimerization. The antagonists inhibit essential functions of Vif and accordingly are useful as inhibitors of HIV-1 replication.
Abstract:
The present invention includes methods and apparatuses that utilize microchannel technology and, more specifically in exemplary form, producing hydrogen peroxide using microchannel technology. An exemplary process for producing hydrogen peroxide comprises flowing feed streams into intimate fluid communication with one another within a process microchannel to form a reactant mixture stream comprising a hydrogen source and an oxygen source such as, without limitation, hydrogen gas and oxygen gas. Thereafter, a catalyst is contacted by the reactant mixture and is operative to convert a majority of the reactant mixture to hydrogen peroxide that is withdrawn via an egressing product stream. During the hydrogen peroxide chemical reaction, exothermic energy is generated. This exothermic energy is absorbed by the fluid within the microchannel as well as the microchannel itself. In a preferred embodiment, a heat exchange fluid is in thermal communication with the microchannel housing the exothermic reaction and is operative to absorb a portion of this exothermic energy and transfer such energy from the microchannel.
Abstract:
Disclosed are a method and apparatus for embedding or detecting watermarks in a text, which belong to the field of document protection. The method and apparatus overlay an additional layer of shade in a document for recording a large amount of information from watermarks. The shade comprises the dots arranged under certain rules. Shifts of the dots record each bit string within the watermark. According to the method and apparatus, a large amount of information can be embedded and the watermarks embedded in the shade are dispersed together with the document which can be digitized by a scanner for being detected.
Abstract:
The present invention includes methods and apparatuses that utilize microchannel technology and, more specifically in exemplary form, producing hydrogen peroxide using microchannel technology. An exemplary process for producing hydrogen peroxide comprises flowing feed streams into intimate fluid communication with one another within a process microchannel to form a reactant mixture stream comprising a hydrogen source and an oxygen source such as, without limitation, hydrogen gas and oxygen gas. Thereafter, a catalyst is contacted by the reactant mixture and is operative to convert a majority of the reactant mixture to hydrogen peroxide that is withdrawn via an egressing product stream. During the hydrogen peroxide chemical reaction, exothermic energy is generated. This exothermic energy is absorbed by the fluid within the microchannel as well as the microchannel itself. In a preferred embodiment, a heat exchange fluid is in thermal communication with the microchannel housing the exothermic reaction and is operative to absorb a portion of this exothermic energy and transfer such energy from the microchannel.
Abstract:
An exemplary image signal processing circuit (20) includes an image sensor (22), a drive circuit (28), and a microprocessor (24). The drive circuit includes an image signal processor (25) and a data processor (26). The microprocessor is provided to send control signals to the image sensor, the image signal processor, and the data processor. The image sensor is provided to receive exterior light beams and to convert the light beams into image signals. The image signal processor is provided to turn on the image sensor and convert the image signals received from the image sensor into image signals of a predetermined type and having a predetermined resolution. The data processor is provided to receive the image signals converted by the image signal processor and to process the converted image signals to be applied to a display device such that the display device displays corresponding images.
Abstract:
A field effect transistor configured for use in high power applications and a method for its fabrication is disclosed. The field effect transistor is formed of III-V materials and is configured to have a breakdown voltage that is advantageous for high power applications. The field effect transistor is so configured by determining the operating voltage and the desired breakdown voltage for that operating voltage. A peak electric field is then identified that is associated with the operating voltage and desired breakdown voltage. The device is then configured to exhibit the identified peak electric field at that operating voltage. The device is so configured by selecting device features that control the electrical potential in the device drift region is achieved. These features include the use of an overlapping gate or field plate in conjunction with a barrier layer overlying the device channel, or a p-type pocket formed in a region of single-crystal III-V material formed under the device channel. The overlapping gate/field plate or p-type pocket extend into the drift region of the device, controlling the electrical potential of the device in a manner that provides the desired control of the electrical potential in the drift region.