Abstract:
A retroreflector includes a glass prism having three mutually perpendicular planar reflecting faces and a front face, the three reflecting faces intersecting in intersecting lines each having a mark, the front surface including three marks, each of the marks on the intersecting lines and the front surface having a different angle in a 2D image obtained a camera for any angle of an optical axis of the camera from 0 to 45 degree relative to a vector normal of the front face.
Abstract:
A method of finding a home reference distance of a 3D coordinate measurement device in which a mathematical adjustment is made to move the vertex point to the sphere center of a spherically mounted retroreflector (SMR).
Abstract:
A method of correcting centering errors of a spherically mounted retroreflector (SMR) when the distance meter of a 3D coordinate measurement device is reset to a home reference distance.
Abstract:
A three-dimensional (3D) coordinate measurement device combines tracker and scanner functionality. The tracker function is configured to send light to a retroreflector and determine distance to the retroreflector based on the reflected light. The tracker is also configured to track the retroreflector as it moves, and to determine 3D coordinates of the retroreflector. The scanner is configured to send a beam of light to a point on an object surface and to determine 3D coordinate of the point. In addition, the scanner is configured to adjustably focus the beam of light.
Abstract:
A portable articulated arm coordinate measuring machine includes a noncontact 3D measuring device that has a projector that is manually movable by an operator from a first position to a second position. The projector is configured to emit a first pattern of light onto an object. The noncontact 3D measuring device further includes a scanner camera and an edge-detecting camera. The scanner camera is arranged to receive the first pattern of light reflected from the surface of the object. The edge-detecting camera arranged to receive light reflected from an edge feature of the object. The articulated arm coordinate measurement machine includes a processor configured to determine first 3D coordinates of an edge point of the edge feature based on electrical signals received from the scanner camera and the edge-detecting camera.
Abstract:
A method of measuring spherically mounted retroreflector (SMR) with a 3D coordinate measurement device such as a laser tracker. The SMR includes an open-air cube corner retroreflector having a vertex point located near a sphere center of the SMR. Measurements of the SMR to the vertex point are corrected to indicate 3D coordinates of the SMR sphere center by accounting for SMR depth error and SMR runout error.
Abstract:
A line scanner measures 3D coordinates of an object surface and includes a projector with a light source that projects a line of light at the object surface. The line scanner also has a camera with a 2D array of light sensors and electronics that controls the exposure and readout times of each light sensor, the exposure time being controlled in either rows or columns of the array in a non-sequential manner, the readout time being controlled in either rows or columns that are the same as the rows or columns whose exposure time is being controlled, each of the light sensors converts an amount of captured optical energy into a digital signal value, the captured optical energy being from a reflected line of light from the object surface. Further includes a processor that receives the digital signal values and calculates the 3D coordinates of the object surface.
Abstract:
An optical measurement device is provided includes a tracker device configured to emit a first beam of light and receive a portion of the first beam of light reflected off of a target. The first beam of light being emitted from a gimbal location, the tracker device further including an absolute distance meter configured to determine the distance to the target. A scanner device is provided that is configured to emit a second beam of light along a pathway without reversing direction and receive a portion of the second beam of light reflected off an object. The second beam of light being emitted from the gimbal location, the scanner further being configured to determine the distance to the object based at least in part on the speed of light.
Abstract:
Measuring with a system having retroreflector targets and a laser tracker includes storing a list of coordinates for three targets and at least one added point; capturing on a photosensitive array a portion of the light emitted by a light beam and reflected off the targets; obtaining spot positions on a photosensitive array of a tracker camera from the reflected light; determining a correspondence between three spot positions on the photosensitive array and the coordinates of the targets; directing a beam of light from the tracker to the targets based at least in part on the coordinates of the first target and the first spot position; measuring 3-D coordinates of the targets with the tracker; determining 3-D coordinates of the at least one added point based at least in part on the measured 3-D coordinates of the targets and the coordinates of the at least one added point.
Abstract:
A target is provided having a retroreflector. A body is provided having a spherical exterior portion, the body containing a cavity. The cavity is sized to hold the retroreflector, the cavity open to the exterior of the body and having at least one surface opposite the opening, the retroreflector at least partially disposed in the cavity, wherein the retroreflector and at least one surface define a space therebetween. A transmitter is configured to emit an electromagnetic signal. A first actuator is configured to initiate emission of the electromagnetic signal, wherein the transmitter and the first actuator are affixed to the body.