摘要:
A lens for a light emitting diode is formed with a material having a refractive index of n, and the lens includes a base, a first curved circumferential surface extending from the base, a curved center-edge surface extending from the first curved circumferential surface, and a curved centermost surface extending from the curved center-edge surface. The base includes a groove for receiving a light emitting chip therein. In the lens, a distance from a center of the base to a point of the curved center-edge surface is always shorter than the radius of curvature for the point of the curved center-edge surface. The curved centermost surface has a concave shape with respect to the base. In addition, when an obtuse angle formed between a main axis of the lens and a tangent line of a point of the curved centermost surface is A1, and an acute angle formed between a straight line linking the center of the base to the point of the curved centermost surface and the main axis of the lens is A2, the lens satisfies the equation: A1+A2
摘要:
A lens for a light emitting diode is formed with a material having a refractive index of n, and the lens includes a base, a first curved circumferential surface extending from the base, a curved center-edge surface extending from the first curved circumferential surface, and a curved centermost surface extending from the curved center-edge surface. The base includes a groove for receiving a light emitting chip therein. In the lens, a distance from a center of the base to a point of the curved center-edge surface is always shorter than the radius of curvature for the point of the curved center-edge surface. The curved centermost surface has a concave shape with respect to the base. In addition, when an obtuse angle formed between a main axis of the lens and a tangent line of a point of the curved centermost surface is A1, and an acute angle formed between a straight line linking the center of the base to the point of the curved centermost surface and the main axis of the lens is A2, the lens satisfies the equation: A1+A2
摘要:
A light source module includes a driving substrate, a plurality of light source blocks and a currents control element. The light source blocks are disposed on the driving substrate, and each of the light source blocks includes at least one light source. The currents control element is disposed on the driving substrate, and has channel terminals for individually controlling driving currents passed through at least two light source blocks. The channel terminals are electrically connected to the at least two light source blocks, respectively. The currents control element is disposed on the driving substrate and individually controls the driving currents applied to the light source blocks, so that a number of wires of a connection cable connected to a light source driving connector is less than the number of light source drive currents being individually controlled.
摘要:
A two-dimensional light source includes a base substrate having holes, wires disposed on a lower surface of the base substrate, a light emitting diode (LED) chip disposed on an upper surface of the base substrate, plugs that connect two electrodes of the LED chip to the wires through the holes, a buffer layer covering the LED chip, and an optical layer that is disposed on the buffer layer and has an optical pattern formed at a portion of the optical layer corresponding to the LED chip.
摘要:
A light source apparatus includes a light source, a duty determining part, a luminance shifting determining part and a duty compensation part. The light source includes a plurality of light-emitting blocks. The duty determining part determines a duty of light-emitting blocks by using a block representative value obtained from a plurality of image blocks that are divided in accordance with a plurality of light-emitting blocks. The luminance shifting determining part compares block representative values of a previous frame with block representative values of a current frame to determine whether a luminance shifting is generated at an adjacent light-emitting block. The duty compensation part compensates a duty of the adjacent light-emitting blocks when the luminance shifting is generated at the adjacent light-emitting blocks. Thus, the duty of the adjacent light-emitting blocks determined as a block representative value is compensated so that an occurrence of flicker may be decreased.
摘要:
A light source driving device includes a resolution analyzing part, a dimming block adjusting part, a local dimming part and a light source unit. The resolution analyzing part obtains an image resolution. The dimming block adjusting part adjusts the size or the number of dimming blocks generating light in a local dimming method in response to the resolution. The local dimming part generates a local dimming signal for individually driving the dimming blocks in response to the image data and the size or the number of dimming blocks. The light source unit is driven by the local dimming signal to generate light. The size or the number of the dimming blocks is adjusted to be optimized for the obtained image resolution, so that regardless of the image resolution, a local dimming signal corresponding to the size and the number of the dimming blocks may be generated.
摘要:
A light source panel according to an embodiment includes a plurality of light-emitting parts having a plurality of light-emitting substances to be divided into a predetermined number of partial areas. A light source driving part provides each of the light-emitting substances with a current. An adaptive dimming control part receives an image signal from an external device and sets the light-emitting parts into a first dimming block corresponding to a first color class of the first image signal or a second dimming block corresponding to a second color class of the first image signal to control the backlight assembly, in order to prevent color artifacts from being generated at a boundary area between the first dimming block and the second dimming block, the adaptive dimming control part controlling the backlight assembly, so that the first dimming block performs a second dimming operation.
摘要:
There is provided a method of boosting a local dimming signal. In the method, it is determined whether or not local dimming signals, which are applied for individually driving light source blocks per frame, satisfy boosting conditions. Then, a predetermined local dimming signal corresponding to at least one of the light source blocks is boosted to a reference luminance value when the local dimming signals continuously satisfy the boosting conditions, and the boosting luminance of the predetermined local dimming signal at the reference luminance value is gradually decreased after a light adaptation time of an observer's eye. When the luminance of light source blocks that are boosted is gradually decreased before the light adaptation time or luminance of light source blocks that will be boosted is gradually increased to the light adaptation time, power consumption required to boost the light source blocks may be decreased.
摘要:
To drive light-emitting blocks, currents are sensed through the light-emitting blocks arranged in an M×N matrix (wherein M and N are natural numbers), wherein M rows are connected to a row switching part and N columns are connected to a column switching part. The light-emitting blocks are driven by a local dimming method with feedback control responsive to the sensed currents.
摘要:
A light-generating device includes a driving substrate and a plurality of light source arrays. The driving substrate has a rectangular planar shape. The plurality of light source arrays is formed on the driving substrate. The light source arrays include at least one light emitting diode to generate light in response to power being applied through the substrate, and the light source arrays are spaced apart from each other. Thus, heat generated from the light-generating device is rapidly dissipated from the light-generating device, improving brightness of the light, brightness uniformity of the light and color reproducibility of the light.