Abstract:
A method and apparatus for supporting machine-type communications (MTC) are disclosed. A wireless transmit/receive unit (WTRU) may configure itself to operate in a mobile-originated-only mode. The WTRU may perform no, or a subset of, radio resource control (RRC) idle and/or non-access stratum (NAS) idle/standby state procedures in the mobile-originated-only mode. For example, the WTRU may perform cell reselection but not paging monitoring in the mobile-originated-only mode. Alternatively, the WTRU may perform paging monitoring but not cell reselection and location update. The operation in the mobile-originated-only mode may be triggered explicitly or implicitly. For example, the WTRU may operate in the mobile-originated-only mode if an inactivity timer expires. The WTRU may switch the mode in accordance with a pre-configured schedule. After transition of the operation mode, the WTRU may send a message to the network indicating such mode switch.
Abstract:
A method and apparatus for radio link synchronization and power control in CELL_FACH state and idle mode are disclosed. A wireless transmit/receive unit (WTRU) transmits a random access channel (RACH) preamble and receives an acquisition indicator acknowledging the RACH preamble via an acquisition indicator channel (AICH) and an index to an enhanced dedicated channel (E-DCH) resource. The WTRU determines a start of an E-DCH frame. An F-DPCH timing offset is defined with respect to one of the RACH access slot and an AICH access slot carrying the acquisition indicator. A relative F-DPCH timing offset may be signaled to the WTRU and the WTRU may determine a start of an E-DCH frame based on the relative F-DPCH timing offset and timing of an AICH access slot including the acquisition indicator. The WTRU may transmit a dedicated physical control channel (DPCCH) power control preamble before starting an E-DCH transmission.
Abstract:
A method and an apparatus for uplink transmission using multiple uplink carriers are disclosed. A wireless transmit/receive unit (WTRU) selects a dedicated channel medium access control (MAC-d) flow with highest priority data to be transmitted and performs uplink carrier selection and enhanced dedicated channel (E-DCH) transport format combination (E-TFC) restriction and selection to select a carrier among a plurality of carriers and select an E-TFC based on a maximum supported payload, a remaining scheduled grant payload of the selected carrier and a remaining non-scheduled grant payload. The WTRU then generates a medium access control (MAC) protocol data unit (PDU) for E-DCH transmission via the selected carrier based on the selected E-TFC.
Abstract:
A method and apparatus for supporting machine-type communications (MTC) are disclosed. A wireless transmit/receive unit (WTRU) may configure itself to operate in a mobile-originated-only mode. The WTRU may perform no, or a subset of, radio resource control (RRC) idle and/or non-access stratum (NAS) idle/standby state procedures in the mobile-originated-only mode. For example, the WTRU may perform cell reselection but not paging monitoring in the mobile-originated-only mode. Alternatively, the WTRU may perform paging monitoring but not cell reselection and location update. The operation in the mobile-originated-only mode may be triggered explicitly or implicitly. For example, the WTRU may operate in the mobile-originated-only mode if an inactivity timer expires. The WTRU may switch the mode in accordance with a pre-configured schedule. After transition of the operation mode, the WTRU may send a message to the network indicating such mode switch.
Abstract:
Methods and apparatus for power scaling for multi-carrier wireless terminals are disclosed. Methods and mechanisms are provided for power scaling when a multi-carrier WTRU reaches its maximum output power.
Abstract:
A method and apparatus for radio link synchronization and power control in CELL_FACH state and idle mode are disclosed. A wireless transmit/receive unit (WTRU) transmits a random access channel (RACH) preamble and receives an acquisition indicator acknowledging the RACH preamble via an acquisition indicator channel (AICH) and an index to an enhanced dedicated channel (E-DCH) resource. The WTRU determines a start of an E-DCH frame. An F-DPCH timing offset is defined with respect to one of the RACH access slot and an AICH access slot carrying the acquisition indicator. A relative F-DPCH timing offset may be signaled to the WTRU and the WTRU may determine a start of an E-DCH frame based on the relative F-DPCH timing offset and timing of an AICH access slot including the acquisition indicator. The WTRU may transmit a dedicated physical control channel (DPCCH) power control preamble before starting an E-DCH transmission.
Abstract:
A wireless transmit/receive unit (WTRU) sending a first data signal via an enhanced dedicated channel (E-DCH) is provided. The WTRU may reconfigure physical channel parameters based on a reconfiguration message. The WTRU may subsequently send a second data signal without performing a synchronization procedure.
Abstract:
A wireless transmit/receive unit (WTRU) may configure at least one first state variable for controlling discontinuous reception (DRX) associated with a first group of cells, and at least one second state variable for controlling DRX associated with a second group of cells. In a further example, the first group of cells includes a plurality of cells and the second group of cells includes a different plurality of cells. The WTRU may perform a first DRX operation on the first group of cells based on the at least one first state variable. Also, the WTRU may a second DRX operation on the second group of cells based on the at least one second state variable. Further, the WTRU may receive a first order for DRX activation for the first group of cells. Moreover, the WTRU may activate DRX for the first group of cells based on the first order.
Abstract:
A wireless transmit/receive unit (WTRU) may receive configuration information indicating a first and a second cell group, and indicating discontinuous reception (DRX) information for them; and may receive a command associated with DRX. The WTRU may perform, based on the command, DRX for cells of the first and second cell groups. A first active time for the first cell group may differ from a second active time for the second cell group. Cells within the first cell group may be active during the first active time; cells within the second cell group may be active during the second. The WTRU may receive a first command to deactivate a first cell of the first cell group, and deactivate the cell based on the first command. The WTRU may receive a first command to reactivate the deactivated first cell, and reactivate the deactivated first cell based on the first command to reactivate.
Abstract:
A method for WTRU autonomous resource selection may comprise receiving a TX resource pool for D2D communication from a base station. The WTRU may sense one or more resources of the TX resource pool and determine resources for transmission of control information and D2D data, based on the sensing. The WTRU may then transmit, to another WTRU, the control information and the D2D data on the determined resources.