Abstract:
A method for performing multi-point coordination for receiving uplink data by a serving point in accordance with an embodiment of the present invention comprises the steps of: scheduling physical uplink shared channel (PUSCH) transmission of a served terminal by the serving point; transmitting a message including at least a part of a scheduling result of the PUSCH transmission to a coordinated point; and after transmission of the message, transmitting downlink control information including the scheduling result of the PUSCH transmission to the terminal, wherein the PUSCH of the terminal scheduled by the serving point is received by the coordinated point which has obtained the message.
Abstract:
The present application discloses a method wherein a terminal sets an interference measurement reference signal resource in a wireless communication system. The method comprises the steps of: receiving first resource setting data, comprising bit map data indicating the position of a resource element for a reference signal in one subframe and comprising subframe data whereby the reference signal can be received; receiving second resource setting data of the interference measurement reference signal, constituted on the basis of the first resource setting data and the interference measurement reference signal resource, on the basis of the second resource setting data. The second resource setting data comprises resource element data indicating the position of one or more resource element and comprises interference measurement subframe data indicating the position of a subframe where the interference measurement reference signal can be received. The subframe indicated by the interference measurement subframe data is defined by a subset of the subframe indicated by the subframe data comprised in the first resource setting data.
Abstract:
A method of a receiving a downlink signal from a base station including a two-dimensional (2D) antenna array composed of a plurality of antenna elements in a wireless communication system is disclosed. The method includes receiving a reference signal allocated to at least one column-direction antenna array of the 2D antenna array, receiving information about a semi-static beam candidate set composed of at least one semi-static beam applicable to the at least one column-direction antenna array, and measuring an average channel state for semi-static beamforming using the received reference signal and the information about the semi-static candidate set. The 2D antenna array is virtualized to one-dimensional (1D) antenna array supporting dynamic beamforming by applying at least one semi-static beam in the semi-static beam candidate set to the column-direction antenna array.
Abstract:
A method for transmitting a signal to a user equipment by a base station in a wireless communication system is disclosed. The method includes receiving information about a preferred beamforming vector in a first subframe from the user equipment, selecting a first random beamformer corresponding to the first subframe from a beamforming vector set for the first subframe, using the information about the preferred beamforming vector, transmitting a downlink signal to the user equipment in the first subframe using the first random beamformer, selecting a second random beamformer corresponding to a second subframe, using the first random beamformer, and transmitting a downlink signal to the user equipment in the second subframe using the second random beamformer.
Abstract:
The present invention relates to a method for a transmitting end efficiently transmitting a signal in a wireless communication system supporting a multi-antenna and an apparatus for same. More particularly, the method comprises a step of transmitting a downlink signal based on a precoding matrix (W) for an antenna comprising a plurality of antenna elements aligned perpendicularly, wherein the precoding matrix (W) corresponds to a codebook configured so that phase increase is limited with respect to a plurality of precoding vector values populating a same column.
Abstract:
The present invention relates to a method and device for receiving a downlink signal by a terminal in a wireless communication system. More particularly, the method includes: receiving first quasi co-location (QCL) characteristic-related information for the downlink communication of a first RF resource; and receiving a downlink signal by using a second RF resource, wherein the second RF resource indicates an RF resource when the use of an RF resource is changed from uplink communication use to downlink communication use at a specific time, and a downlink signal is decoded by using second QCL characteristic-related information for the downlink communication of the second RF resource, and the first QCL characteristic-related information and the second QCL characteristic-related information are independently defined.
Abstract:
One embodiment of the present invention discloses a method by which a CoMP scheduling device determines a CoMP set in a wireless communication system that supports coordinated multiple-point transmission and reception (CoMP), the method comprising the steps of receiving, from at least one base station, information on a terminal served by the base station; determining a CoMP set on the basis of the received information on the terminal (s); and transmitting identification information of the terminal(s) included in the CoMP set to a base station(s) included in the CoMP set, wherein the information on the terminal can include the identification information of the terminal, capability, quality of service (QoS), a channel state value between the terminal and each base station around the terminal, and/or ePDCCH set configuration information of the terminal.
Abstract:
The present invention relates to a wireless communication system, and more specifically, disclosed are a method and an apparatus for transmitting or receiving a downlink signal by considering an antenna port relationship. A method for user equipment receiving a physical downlink shared channel (PDSCH) signal in the wireless communication system, according to one embodiment of the present invention, comprises the steps of: determining from the downlink subframe a resource element (RE) on which the PDSCH is mapped; and receiving the PDSCH signal based on the RE on which the PDSCH is mapped, wherein when the DCI is comprised according to DCI format 1A and the downlink subframe is a multicast broadcast single frequency network (MBSFN) subframe, the RE on which the PDSCH is mapped can be determined depending on cell-specific reference signal (CRS) location information, which is included in a PDSCH resource element mapping and Quasi co-location indicator (PQI) parameter set that is established by an upper layer.
Abstract:
The present invention relates to a wireless communication system. A method for reporting CSI (Channel State Information) in a cooperative multi-point (CoMP) wireless communication system, the method performed by a user equipment (UE) and comprising receiving first resource configuration information for a CSI-RS (Channel-State Information-Reference Signal) and second resource configuration information for interference measurement; and calculating CSI using the first resource configuration information and the second resource configuration information, the CSI being for one or more base stations (BSs) among a plurality of BSs participating the COMP, wherein an interference measurement resource according to the second resource configuration information exists in a union of zero-power CSI-RS resources of each of the plurality of BSs.
Abstract:
The present invention provides a method and a device for transmitting or receiving channel state information (CSI). According to the present invention, when a user equipment can be set with one or more CSI processes per serving cell, a CSI request field included in downlink control information for a specific serving cell indicates at least whether a non-periodic CSI report triggered by the CSI request field is triggered for a set of CSI process(es) set by a higher layer from among the CSI process(es) for the one serving cell.