Abstract:
Systems and methods for host-side configuration of a host channel adapter (HCA). An exemplary embodiment can provide a HCA, including a control circuit with a processor and a memory, and at least one port operative to connect the HCA to a network fabric. Additionally, the HCA can include a subnet management agent (SMA) that executes on the HCA, and a software driver for the HCA that includes a control application programming interface (API) that exposes functionality to hyper-privileged software executing on a host. The hyper-privileged software can set, through the control API, configurable variables stored in the memory of the HCA. Based on the value of the set variables, the HCA can operate in one of a legacy mode or one or more other modes.
Abstract:
Systems and methods are provided for supporting scalable multi-homed routing for virtual switch based host channel adapter (HCA) virtualization in a subnet. An exemplary method can provide one or more switches, a plurality of host channel adapters, a plurality of hypervisors, and a plurality of virtual machines. The method can arrange the plurality of host channel adapters with one or more of a virtual switch with prepopulated local identifiers (LIDs) architecture or a virtual switch with dynamic LID assignment architecture. The method can further perform a multi-homed routing for the subnet, wherein at least one of the plurality of host channel adapters comprises two virtual switches, wherein the two virtual switches are treated as endpoints of the subnet, and wherein the multi-homed routing for the subnet ensures that each the two virtual switches are routed through independent paths.
Abstract:
A system and method for supporting subnet management in a network environment is described. The system and method can be used in an engineered system for middleware and application execution, or a middleware machine environment. The system can associate a subnet administrator (SA) in a subnet with a plurality of SA proxies, each of which can receive plurality of requests from one or more client nodes. The SA can handle the requests, which are forwarded from the SA proxies. Additionally, each client node can be assigned a dedicated queue pair (QP) number, so that there is no need for always sending an initial request to a pre-defined well-known QP number.
Abstract:
A system and method can support multi-homed routing in a network environment, which can be based on InfiniBand architecture using a fat-tree or a similar topology. The system can provide an end node that is associated with a switch port on a leaf switch in a network fabric. Then, the system can perform routing for each of a plurality of ports on the end node, and ensure that the plurality of ports on the end node take mutually independent paths.
Abstract:
A system and method can implement highly available Internet Protocol (IP) based communication across multiple independent communication paths. The system can have different IP addresses associated with different interfaces and communication paths and can implement communication fail-over as part of the communication layers above the IP layer, e.g. at the application level. The system can provide a balance between an average fail-over time and implementation complexity, and can achieve simplicity and robustness while providing high communication performance.
Abstract:
A system and method can support virtual machine live migration in a network. A virtual switch can be associated with a plurality of virtual functions (VFs), and wherein each said virtual function (VF) is associated with a separate virtual interface (VI) space. At least one virtual machine that is attached with a said virtual function (VF) can be associated with a virtual interface (VI), e.g. a queue pair (QP) in an Infiniband (IB) architecture. Furthermore, said at least one virtual machine operates to perform a live migration from a first host to a second host with said virtual function (VF) attached.
Abstract:
A system and method can support virtual machine live migration in a network. A plurality of hosts can be interconnected via the network. Each host contains one or more virtual machines. At least one virtual machine operates to perform a live migration from a first host to a second host. The virtual function, which is attached to a queue pair (QP), can be supported by a host channel adapter (HCA) on a host.
Abstract:
A system and method can support a signaling method in a virtualization environment. The management domain on one or more physical servers can be provided with a mapping table. The management domain operates to receive a message from the subnet administrator, wherein the message indicates a path record change event, such as a virtual machine (VM) migration event in the network. Then, the management domain can forward the received message to one or more virtual machine associated with the management domain based on the mapping table.
Abstract:
A system and method can support multiple domains in an InfiniBand (IB) fabric. The IB fabric can include one or more subnets, wherein each said subnet contains one or more switch nodes. Additionally, at least one said subnet can be divided into one or more sub-subnets, wherein each said sub-subnet is managed by a separate sub-subnet manager that is associated with a unique management key, and wherein said one or more sub-subnets are connected by one or more sub-subnet gateway switch nodes, wherein each sub-subnet gateway switch node belongs to one sub-subnet.
Abstract:
A system and method can support discovering and routing in a fabric with a plurality of switches. The system allows one or more switches in the fabric to be tagged with a switch role. Then, a subnet manager in the fabric detect the switch role that is associated with the one or more switches. Furthermore, a routing algorithm can be applied on the fabric based on the detected switch role associated with the one or more switches.